Уравнение и характеристики механических свободных (затухающих и незатухающих) колебаний. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнение и характеристики механических свободных (затухающих и незатухающих) колебаний.



Вопрос №1

Уравнение и характеристики механических свободных (затухающих и незатухающих) колебаний.

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной телом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

Незатухающие колебания - колебания, амплитуда которых не убывает со временем, а остается постоянной.

х-смещение колеблющейся материальной точки; t-время

Решение уравнения:

А-амплитуда колебаний; ω — фаза колебаний, φ0 — начальная фаза колебаний (при t = 0); ω0 — круговая частота колебаний

Затухающие колебания- колебания, энергия которых уменьшается с течением времени.

где β- коэффициент затухания, w0 – круговая частота собственных колебаний системы (без затухания)

Вопрос №2

УРАВНЕНИЕ И ХАРАКТЕРИСТИКИ МЕХАНИЧЕСКИХ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ И АВТОКОЛЕБАНИЙ

Вынужденными колебаниями наз. незатухающие колебания системы, которые вызываются действием внешней периодической силы.
Если сила не будет периодической, то не возникнет и периодических колебаний. Например, если сила постоянна, то возникает статическое отклонение системы. Примеры: колебания гребных винтов, лопаток турбины, качелей при раскачивании, мостов и балок при ходьбе и т.д.
Сила, вызывающая вынужденные колебания, наз. вынуждающей (возмущающей) силой.
Если внешняя вынуждающая сила изменяется по гармоническому закону , то в системе устанавливаются гармонические колебания с частотой внешней вынуждающей силы (процесс установления колебаний изображен на рисунке: вынужденные колебания накладываются на свободные затухающие колебания; после того, как свободные колебания прекращаются, остаются только вынужденные).    

 

Колебательная система, совершающая незатухающие колебания за счет действия источника энергии, не обладающего колебательными свойствами (периодичностью), наз. автоколебательной.
Примеры: часы, орган, духовые инструменты, сердечно-сосудистая система, паровые машины и двигатели внутреннего сгорания и т.д.
Любая автоколебательная система состоит из 4 частей: 1. колебательная система; 2. источник энергии, компенсирующий потери энергии на преодоление сопротивления; 3. клапан – устройство, регулирующее поступление энергии в колебательную систему определенными порциями и в определенный промежуток времени; 4. обратная связь – устройство для обратного воздействия автоколебательной системы на клапан, управляющее работой клапана за счет процессов в самой колебательной системе.  

 

Вопрос №3

Уравнение и характеристики механических волн

Волной называется процесс распространения механических колебаний в упругой среде.

Скорость распространения волны:

v - скорость
λ - длина волны
T - период

Частотой волны называется частота колебаний точек среды, в которой распространяется волна.

Продольные волны - волны, при распространении которых частицы среды колеблются вдоль той же прямой, по которой распространяется волна. При этом в среде чередуются области сжатия и разряжения.

Поперечные волны - волны, при распространении которых частицы колеблются перпендикулярно направлению распространения волны. При этом в среде возникают периодические деформации сдвига.

Энергетические характеристики волны

 

Объемная плотность энергии - энергия колебательного движения частиц среды, содержащихся в единице ее объема:

 

Поток энергии (Ф) - величина, равная энергии, переносимой волной через данную поверхность за единицу времени:

Интенсивность волны или плотность потока энергии (I) - величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:

Некоторые специальные разновидностиволн

Вопрос №4

Эффект Доплера и его использование для медико-биологических исследований

Эффект доплера- изменение частоты волн,воспринимаемымих наблюдателем(приемником волн) вследствие относительного движения источника волн или наблюдателя:
1)Наблюдатель приближается к источнику волн (неподвиж.относительноокр.среды) со скоростью Uн. За одинаковый интервал времени встречает больше волн, чем при отсутствии движениния.Этозначит,что воспринимаемая частота V’ больше частоты волны,испускаемой источником:

Эффект Доплера используется для определения скорости кровотока, скорости движения клапанов и стенок сердца (доплеровская эхокардиография) и других органов; потока энергии волн. Волновой процесс связан с распространением энергии. Количественной характеристикой от энергии является поток энергии.

 

Вопрос №5

Вопрос №6

Вопрос №8

Вопрос №9

Вопрос №10

Вопрос №12

МЕТОДЫ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ ЖИДКОСТИ.КЛИНИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ КРОВИ.ДИАГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ ВЯЗКОСТИ КРОВИ

Совокупность методов измерения вязкости называют вискози­метрией, а приборы, используемые для таких целей, — вискозиметрами. Рассмотрим наиболее распространенные методы вискозиметрии. Капиллярный метод основан на формуле Пуазейля и заключается в измерении времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном' перепаде давлений. Капиллярный вискозиметр применяется для определения вяз­кости.

Капиллярными вискозиметрами измеряют вязкость от значений 10-5 Па • с, свойственных газам, до значений 104 Па • с, ха­рактерных для консистентных смазок.

Метод падающего шарика используется в вискозиметрах, осно­ванных на законе Стокса. Из формулы находим

Таким образом, зная величины, входящие в правую часть этой формулы, и измеряя скорость равномерного падения шарика, можно найти вязкость данной жидкости.

Применяются также ротационные вискозиметры, в которых жидкость находится в зазоре между двумя соосными телами, на­пример цилиндрами. Один из цилиндров (ротор) вращается, а другой неподвижен. Вязкость измеряется по угловой скорости ро­тора, создающего определенный момент силы на неподвижном цилиндре, или по моменту силы, действующему на неподвижный цилиндр, при заданной угловой скорости вращения ротора.

С помощью ротационных вискозиметров определяют вязкость жидкостей в интервале 1—105 Па • с, т. е. смазочных масел, рас­плавленных силикатов и металлов, высоковязких лаков и клеев, глинистых растворов и т. п.

В ротационных вискозиметрах можно менять градиент скорости, задавая разные угловые скорости вращения ротора. Это позволяет измерять вязкость при разных градиентах и установить зависимость η = f(dv/dx), которая характерна для неньютоновских жидкостей.

В настоящее время в клинике для определения вязкости крови используют вискозиметр Гесса с двумя капиллярами

В вискозиметре Гесса объем крови всегда одинаков, а объем во­ды отсчитывают по делениям на трубке 1, поэтому непосредствен­но получают значение относительной вязкости крови. Для удобст­ва втсчета сечения трубок 1 и 2 делают различными так, что, не­смотря на разные объемы крови и воды, их уровни в трубках будут примерно одинаковы.

Вязкость крови человека в норме 4—5 мПа • спри патологии колеблется от 1,7 до 22,9 мПа * с, что сказывается на скорости оседания эритроцитов (СОЭ). Венозная кровь обладает несколько большей вязкостью, чем артериальная. При тяжелой физической работе увеличивается вязкость крови. Некоторые инфекционные заболевания увеличивают вязкость крови, другие же, например брюшной тиф и туберкулез, — уменьшают.

 

Вопрос № 16

Уравнение Бернулли

Уравнение Бернулли формулируется следующим образом:

Вопрос №17

Вопрос №18

Вопрос №19

Методы определения коэффициента поверхностного натяжения.

Метод.

1.Капиллярный метод.

Метод основан на использовании соотношения

2. Метод Ребиндера (метод определения максимального давления в пузырьке).

3. Сталагмометрический метод (метод счета капель).

Вопрос №20

Вопрос №21

Капиллярные явления. Эмболия
С поверхностным натяжением связано и явление газовой эмболии, при котором пузырек газа способен затруднить и даже остановить кровоток в мелких сосудах и лишить кровоснабжения какой-либо орган, что может привести к серьезному функциональному расстройству и даже летальному исходу. Поэтому рассмотрим подробнее поведение пузырька воздуха, находящегося в капилляре с жидкостью.
Пока диаметр газового пузырька меньше диаметра сосуда, он имеет сферическую форму и движется вместе с током крови. Если он попадает в мелкий сосуд, диаметр которого меньше диаметра пузырька, его мениски деформируются под действием динамического давления текущей крови: передний по току крови мениск вытягивается, его радиус кривизны уменьшается, а задний под напором крови уплощается, его радиус кривизны увеличивается.
Таким образом, попавшие в кровь пузырьки воздуха способны закупорить мелкие сосуды. Воздушная эмболия может возникнуть при ранении крупных вен, где давление крови ниже атмосферного, при неправильно проведенных внутривенных инъекциях и в других ситуациях.

Вопрос №25

Вопрос №28

Насосная функция сердца

Единственной функцией сердца является обеспечение энергией, которая необходима для циркуляции крови в сердечно-сосудистой систем.е. Кровоток через все органы тела осуществляется пассивно и происходит только благодаря тому, что при осуществлении насосной деятельности сердца артериальное давление поддерживается на более высоком уровне, чем венозное Насос правого сердца создает энергетический импульс, необходимый для передвижения крови через сосуды легких, а насос левого сердца обеспечивает необходимую энергию для перемещения крови через органы тела.
Путь крови через камеры сердца указан на рис. 2-1. Венозная кровь возвращается из органов тела в правое предсердие через верхнюю и нижнюю полые вены.

Вопрос №29

Цикл работы сердца

Здоровое сердце ритмично и без перерывов сжимается и разжимается. В одном цикле работы сердца различают три фазы:

1. Наполненные кровью предсердия сокращаются. При этом кровь через открытые клапаны нагнетается в желудочки сердца (они в это время остаются в состоянии расслабления). Сокращение предсердий начинается с места впадения в него вен, поэтому устья их сжаты и попасть назад в вены кровь не может.

2. Происходит сокращение желудочков с одновременным расслаблением предсердий. Трёхстворчатые и двустворчатые клапаны, отделяющие предсердия от желудочков, поднимаются, захлопываются и препятствуют возврату крови в предсердия, а аортальный и лёгочный клапаны открываются. Сокращение желудочков нагнетает кровь в аорту и лёгочную артерию.

3. Пауза (диастола) короткий период отдыха этого органа. Во время паузы из вен кровь попадает в предсердия и частично стекает в желудочки. Когда начнётся новый цикл, оставшаяся в предсердиях кровь будет вытолкнута в желудочки — цикл повторится.

Один цикл работы сердца длится около 0,85 сек., из которых на время сокращения предсердий приходится только 0,11 сек., на время сокращения желудочков 0,32 сек., и самый длинный — период отдыха, продолжающийся 0,4 сек. Сердце взрослого человека, находящегося в покое, работает в системе около 70 циклов в минуту.

Автоматизм сердца

Автоматизм — способность сердца возбуждаться под влиянием импульсов, возникающих в кардиомиоцитах без внешних раздражителей. В физиологических условиях наивысшим автоматизмом в сердце обладает САУ, поэтому его называют автоматическим центром первого порядка.

 

Регуляция работы сердца

Работа сердца регулируется при помощи миогенных, нервных и гуморальных механизмов.

Нервная система регулирует частоту и силу сердечных сокращений: (симпатическая нервная система обуславливает усиление сокращений, парасимпатическая — ослабляет).

Вопрос №30

Вопрос №31

Электрический диполь

Электрический диполь — система двух равных по модулю разноименных точечных зарядов (), расстояние между которыми значительно меньше расстояния до рассматриваемых точек поля. (два статических заряда, отстоящих на некотором расстоянии друг от друга.)

Плечо диполя — вектор , направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между зарядами..

 

Вопрос №32

Понятие о мультиполе.

Мультипо́ли — определённые конфигурации точечных источников (зарядов). Простейшими примерами мультиполя служат точечный заряд — мультиполь нулевого порядка; два противоположных по знаку заряда, равных по абсолютной величине — диполь, или мультиполь 1-го порядка; 4 одинаковых по абсолютной величине заряда, размещённых в вершинах параллелограмма, так что каждая его сторона соединяет заряды противоположного знака (или два одинаковых, но противоположно направленных диполя) — квадруполь, или мультиполь 2-го порядка. Название мультиполь включает обозначение числа зарядов (на греческом языке), образующих мультиполь, например, октуполь (окту — 8) означает, что в состав мультиполя входит 8 зарядов.

Вопрос №33

33 Дипольный Электрический генератор(токовый диполь)

Электрический диполь - система из двух равных по величине, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга.

Двухполюсная система в проводящей среде, состоящая из истока и стока тока, называется дипольным электрическим генератором или токовым диполем.

Тогда сила тока определяется законом Ома:

где:R - сопротивление проводящей среды, в которой находятся электроды; r - внутреннее сопротивление источника, ε - его э.д.с.; положительный электрод

 

Электрической характеристикой токового диполя является векторная величина, называемая дипольным моментом T).

Дипольный момент токового диполя - вектор, направленный от стока (-) к истоку (+) и численно равный произведению силы тока на плечо диполя:

 

Вопрос №34

Вопрос №35

Вопрос №36

Пьезоэлектрический эффект

Пьезоэлектри́ческий — (давлю, сжимаю) — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля.

Прямой пьезоэффект используется:

в датчиках:

в качестве чувствительного элемента в микрофонах, гидрофонах, головках звукоснимателя электрофонов, приёмных элементов сонаров;

Обратный пьезоэлектрический эффект используется:

· в акустических излучателях:

· в пьезокерамических излучателях звука (эффективны на высоких частотах и имеют небольшие габариты; такие например встраиваются в музыкальные открытки, различные оповещатели,

Вопрос №40

МАГНИТНОЕ ПОЛЕ

Магнитным полем называют вид материи, посредством которой осуществляется силовое воздействие на движущиеся электрические заряды, помещенные в поле, и другие тела, обладающие магнитным моментом. Магнитное поле есть одна из форм проявления электромагнитного поля.

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

 

Вопрос №42

Вопрос №43

Закон Ампера
Закон Ампера — закон взаимодействия постоянных токов. Из закона следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются.

где: B – магнитная индукция; I – сила тока; L – длина участка проводника; sinВ – синус угла между вектором магнитной индукции и проводником.

 

Вопрос №44

Действие магнитного поля на движущийся электрический заряд. Сила Лоренса

 

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца. Она перпендикулярна векторам магнитной индукции и скорости упорядоченного движения заряженных частиц. Ее направление определяется с помощью того же правила левой руки, что и направление силы Ампера.

Fл = q * v * B * sin(a)

где q - заряд частицы;
V - скорость заряда;
B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.

 

Вопрос №45

Магнитные свойства вещества.

Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля.

Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Существует три основных класса веществ с резко различающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Вещества, у которых, подобно железу,

μ≫1

- ферромагнетиками.

Важнейшее свойство ферромагнетиков существование у них остаточного магнетизма. Из ферромагнетиков изготавливают постоянные магниты. Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле- парамагнитными.

Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков нет.

Диамагнетики−вещества, которые выталкиваются из магнитного поля. Магнитная проницаемость практически не зависит от индукции намагничивающего поля и от температуры. При вынесении диамагнетика из внешнего намагничивающего поля он полностью размагничивается и магнитного поля не создает.

Вопрос №46

Магнитные свойства тканей организма.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы.

Магнетизм биологических объектов,т.е их магнитные мвойства и магнитны поля, создоваемые ими, получили название биомагнетизм.

Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод - магнитокардиографня.

Магнитное поле оказывает воздействие на биологические системы, которые в нем находятся. Это воздействие изучает раздел биофизики, называемый магнитобиологией.

 

Вопрос №47

Магнитные свойства вещества

Магнитные поля создаются либо постоянными магнитами, либо токами.

Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля.

Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Существует три основных класса веществ с резко различающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Вещества, у которых, подобно железу,

μ≫1

- ферромагнетиками.

Важнейшее свойство ферромагнетиков существование у них остаточного магнетизма. Из ферромагнетиков изготавливают постоянные магниты. Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле- парамагнитными.

Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков нет.

Диамагнетики−вещества, которые выталкиваются из магнитного поля. Магнитная проницаемость практически не зависит от индукции намагничивающего поля и от температуры. При вынесении диамагнетика из внешнего намагничивающего поля он полностью размагничивается и магнитного поля не создает.

Вопрос №48

Вопрос №50 Переменный ток

Переме́нный ток (англ. alternatingcurrent) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1].

 

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.

Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока .

Вопрос №51

РЕЗОНАНС НАПРЯЖЕНИЙ

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление.

Резонанс в электрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.

Вопрос №53 Импеданс тканей организма.

Ткани организма проводят не только постоянный, но и переменный ток. Следовательно, емкостное сопротивление тканей больше индуктивного.

Импеданс тканей организма зависит от множества физиологических условий, основным из которых является состояние кровообращения, в частности кровенаполнение сосудов.

Вопрос №56

Электрический импульс и импульсный ток
Электрический импульс - кратковременное изменение электрического напряжения или силы тока

Импульсы подразделяются на две группы:

1) видеоимпульсы - электрические импульсы постоянного тока или напряжения
Они бывают различной формы: прямоугольные,пилообразные,трапециедальные,экспоненциальные,колоколообразные

2) радиоимпульсы - модулированные электромагнитные колебания.

Видеоимпульсы различной формы и пример радиоимпульса показаны на рис. 14.7.

Рис. 14.7. Электрические импульсы

Импульсный ток - периодическая последовательность одинаковых импульсов.
Он характеризуется периодом(периодом повторения импульса) Т-средним временем между началами соседних импульсов и частотой повторения импульсов f=1/T

Вопрос №57

Вопрос №58

Электромагнитные волны.

Электромагни́тныево́лны, электромагни́тноеизлуче́ние— распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей вообще, порождённых электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитные волны подразделяются на:

* радиоволны (начиная со сверхдлинных),

* терагерцовое излучение,

* инфракрасное излучение,

* видимый свет,

* ультрафиолетовое излучение,

* рентгеновское излучение и жёсткое (гамма-излучение)

Электромагнитное излучение способно распространяться практически во всех средах и вакуме

Вопрос №59

Вопрос №60

Механизмы лечебных эффектов

Лекарственные вещества в растворе диссоциируют на ионы и заряженные гидрофильные комплексы.

На количество введенного вещества и глубину его проникновения влияют следующие параметры:- сила тока;- концентрация препарата;- длительность процедуры;- физиологическое состояние кожи.

Вопрос №62

Вопрос №68

Вопрос №69

Вопрос №70

Вопрос №71

Вопрос №72

Интерференция света.Когерентные источники. Условие максимума и минимума.

Интерференция -сложение световых волн, идущих от когерентных источников, в результате которого образуются устойчивая картина их усиления и ослабления.

Когерентным и называются источники света одинаковой частоты, обеспечивающие постоянство разности фаз для волн, приходящих в данную точку пространства. Н-пр:в методе Юнга, щели в непрозрачной перегородки являют. когерентными источниками.

Максимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна целому числу длин волн (четному числу полуволн).

Минимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна нечетному числу полуволн.

отпическая разность хода, лямбда-длина волны k-целое число.

Вопрос №73

Вопрос №81

Вопрос №82

Вопрос №83

Вопрос №84

Вопрос №87

Вопрос №90

Вопрос №93

Вопрос №95

Основные понятия биомеханики. внешние и внутренние силы,нормальные и касательные напряжения

БИОМЕХАНИКА – раздел биофизики, в котором рассматриваются механические свойства живых тканей и органов, а также механические явления, происходящие как с целым организмом, так и с его отдельными органами.

МАТЕРИАЛОВЕДЕНИЕ – наука о строении и свойствах материалов. В стоматологическом материаловедении изучаются свойства и строение основных конструкционных материалов (металлов, сплавов, керамик), вспомогательных (моделировочных, формовочных, оттискных и др.) и стоматологических пломбировочных материалов.

Условно считают, что на тела действуют как СОСРЕДОТОЧЕННЫЕ в точке силы, так и РАСПРЕДЕЛЕННЫЕ по определенной поверхности. Например, при жевании силы распределены по жевательной поверхности зубов. Сосредоточенные силы выражаются в единицах силы, а распределенные – в единицах давления.

По характеру действия нагрузки можно разделить их на СТАТИСТИЧЕСКИЕ и ДИНАМИЧЕСКИЕ. При статических нагрузках отсутствуют ускорения элементов объекта, при динамических нагрузках эти ускорения незначительны. В челюстно-лицевом аппарате человека наблюдаются знако-переменные динамические нагрузки.

Действие окружающих тел на рассматриваемое характеризуется ВНЕШНИМИ силами, которые могут распределяться по объему и действовать на каждую частицу тела. Например, силы всемирного тяготения, реакции опор и связей.

Взаимодействие между частями рассматриваемого объекта внутри определенной его области характеризуется ВНУТРЕННИМИ силами. Внутренние силы, возникающие в зубе, выявляются только в том случае, если рассечь объект на две части горизонтальным сечением. Так как связи между частями устранены, то взаимодействие частей нужно заменить системой внутренних сил в сечении. Нижняя часть объекта действует на верхнюю точно так же, как и верхняя на нижнюю. Равнодействующая внутренних сил в сечении может определяться из условий равновесия либо нижней, либо верхней частей рассеченного тела.

Мерой внутренних сил, возникающих при деформации материала под действием внешних сил, является МЕХАНИЧЕСКОЕ НАПРЯЖЕНИЕ.

Вопрос №96

Вопрос №98

Понятие о деформациях сдвига, кручение, изгиба.Связи модуля упругости при сдвиге с модулем Юнга и коэффициентом Пауссона.

Деформация сдвига(среза)- Сдвиг, или срез, возникает, когда внешние силы смешают два параллельных плоских сечения стержня одно относительно другого при неизменном расстоянии между ними. При сдвиге справедлив закон Гука, который определяется таким образом: τ=Gγ, где γ - относительный сдвиг, aG - величина модуля упругости при сдвиге. На сдвиг, или срез, работают, например, заклепки и болты, скрепляющие элементы, которые внешние силы стремятся сдвинуть друг относительно друга.

 

Кручение возникает при действии на стержень внешних сил, образующих момент относительно его оси. Деформация кручения сопровождается поворотом поперечных сечений стержня друг относительно друга вокруг его оси.На кручение работают валы, шпиндели токарных и сверлильных станков и другие детали.

 

Изгиб заключается в искривлении оси прямого стержня или в изменении кривизны кривого стержня.На изгиб работают балки междуэтажных перекрытий, мостов, оси железнодорожных вагонов, листовые рессоры, валы, зубья шестерен, спицы колес, рычаги и многие другие детали.

 

 


99. Прочность материалов. Физические аспекты прочности и разрушения материалов.

ПРОЧНОСТЬ материала или конструкции – способность сопротивляться действию нагрузок, вызывающих деформации.

Прочность материала существенно зависит от характера нагрузок. При динамических режимах большое значение имеет предел выносливости материала. Влияние температуры, агрессивных сред и влажности может значительно изменить сроки службы искусственных зубов и протезов в полости рта.

Прочность существенно зависит от вида напряженного состояния. Наиболее опасный вид – растяжение.

При изучении прочности материала, находящегося в сложном напряженном состоянии, вводится понятие ЭКВИВАЛЕНТНОГО НАПРЯЖЕНИЯ.
Исследования показали, что при действии переменных напряжений в материале возникают трещины, уменьшающие его сопротивление приложенным нагрузкам. Такие трещины усталости равноценны разрезу образцов. Разрушение носит местный характер и не затрагивает всего материала конструкции в целом. В настоящее время под термином УСТАЛОСТЬ МАТЕРИАЛА подразумевается разрушение путем постепенного развития трещины. Трещины возникают тогда, когда значение колеблющегося напряжения превосходят границу, предел усталости.
ПРЕДЕЛ УСТАЛОСТИ (Ϭ уст.) – наибольшее периодически меняющееся напряжение, при котором в материале при любом числе циклов нагружения трещины не возникают. УСЛОВИЕ ПРОЧНОСТИ выражается в том, что наибольшие действующие напряжения должны быть меньше предела выносливости:
Ϭmax≤ Ϭ уст./k уст., где k уст. – коэффициент запаса

Вопрос №100

100.Статистические и динамические нагрузки. Понятие об усталостной прочности, пределе усталости.

Динамическая нагрузка — нагрузка, характеризующаяся быстрым изменением во времени её значения, направления или точки приложения и вызывающая в элементах конструкции значительные силы инерции. Динамические нагрузки испытывают детали машин ударного действия, таких, как прессы, молоты и т. Д

Статическая нагрузка — нагрузка, величина, направление и точка приложения которой изменяются во времени незначительно. При прочностных расчетах можно пренебречь влиянием сил инерции, обусловленных такой нагрузкой. Статической нагрузкой, например, является вес сооружения.

Уста́лостная про́чность (уста́лостная долгове́чность) — свойство материала не разрушаться с течением времени под действием изменяющихся рабочих нагрузок.

Преде́л выно́сливости (также преде́л уста́лости) — в науках о прочности: одна из прочностных характеристик материала, характеризующих еговыносливость, то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.

 

Вопрос №101

Вопрос №1

Уравнение и характеристики механических свободных (затухающих и незатухающих) колебаний.

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной телом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

Незатухающие колебания - колебания, амплитуда которых не убывает со временем, а остается постоянной.

х-смещение колеблющейся материальной точки; t-время

Решение уравнения:

А-амплитуда колебаний; ω — фаза колебаний, φ0 — начальная фаза колебаний (при t = 0); ω0 — круговая частота колебаний

Затухающие колебания- колебания, энергия которых уменьшается с течением времени.

где β- коэффициент затухания, w0 – круговая частота собственных колебаний системы (без затухания)

Вопрос №2



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 4554; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.213.209 (0.295 с.)