Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Метрологические свойства и метрологические характеристики средств измеренийСодержание книги
Поиск на нашем сайте
Метрологические свойства СИ — это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками. Метрологические характеристики, устанавливаемые НД, называют нормируемыми метрологическими характеристиками. Все метрологические свойства СИ можно разделить на две группы: 1) свойства, определяющие область применения СИ; 2) свойства, определяющие качество измерения. К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности. Диапазон измерений — область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений. Порог чувствительности — наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг. К метрологическим свойствам второй группы относятся три главных свойства, определяющих качество измерений: точность, сходимость и воспроизводимость измерений. Наиболее широко в метрологической практике используется первое свойство — точность измерений. Рассмотрим его наиболее подробно. Точность измерений СИ определяется их погрешностью. Погрешность — это разность между показаниями СИ и истинным (действительным) значением измеряемой физической величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением. Для рабочего СИ за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, — значение физической величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значение СИ, которое является в поверочной схеме вышестоящим по отношению к подчиненному СИ, подлежащему поверке. Следует делать различие между понятиями «погрешность» и «ошибка». Первая возникает по объективным обстоятельствам, устранить ее невозможно, можно уменьшить с помощью определенных методов. Термин «ошибка» связан с субъективными обстоятельствами. После проверки результатов ее устраняют. А ХП = ХП - Х0 где А ХП — погрешность поверяемого СИ; ХП - значение той же самой величины, найденное с помощью поверяемого СИ; Х0 — значение СИ, принятое за базу для сравнения — действительное значение. Например, при измерении барометром атмосферного давления получено значение ХП - 1017 гПа. За действительное значение принято показание рабочего эталона, которое равнялось Х0 = 1020 гПа. Следовательно, погрешность измерения барометром составила: А ХП = 1017 - 1020 = -3 гПа. Погрешности СИ могут быть классифицированы по ряду признаков, в частности: - по способу выражения — абсолютные, относительные; - по характеру проявления — систематические случайные; - по отношению к условиям применения — основные, дополнительные. Наибольшее распространение получили метрологические свойства, связанные с первой группировкой — с абсолютными и относительными погрешностями. Точность измерений СИ — качество измерений отражающее близость их результатов к действительному (истинному) значению измеряемой величины Точность определяется показателями абсолютной иотносительной погрешности. Определяемая по формуле А ХП является абсолютной погрешностью. Однако в большей степени точность СИ характеризует относительная погрешность (d), т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ: d = 100 * А ХП / Х0 Точность может быть выражена обратной величиной относительной погрешности — 1/d. Если погрешность d = 0,1% или 0,001, то точность равна 103. В стандартах нормируют характеристики точности, связанные с другими погрешностями. Систематическая погрешность — составляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность градуировки, в частности погрешность показаний прибора с круговой шкалой и стрелкой, если ось последней смещена на некоторую величину относительно центра шкалы. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок. При нормировании систематической составляющей погрешности СИ устанавливают пределы допускаемой систематической погрешности СИ конкретного типа. Величина систематической погрешности определяет такое метрологическое свойство, как правильность измерений СИ. Случайная погрешность — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономерности. Они неизбежны и неустранимы, всегда присутствуют в результатах измерения. При многократном и достаточно точном измерении они порождают рассеяние результатов. Характеристиками рассеяния являются средняя арифметическая погрешность, средняя квадратичная погрешность, размах результатов измерений. Поскольку рассеяние носит вероятностный характер, то при указании на значения случайной погрешности задают вероятность. Выше были подробно рассмотрены характеристики точности результатов измерений. Рассмотрим два других свойства, определяющих качество измерений, — сходимость и воспроизводимость результатов измерений. Сходимость результатов измерений — характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью. Количественная оценка сходимости может быть дана с помощью разных показателей. Так, в стандартах на методы определения химического состава мяса сходимость указывается в различной форме: при определении нитрита за результат анализа принимают среднее арифметическое из двух параллельных определений при расхождении по отношению к среднему не более 10% при Р= 0,95; при определении азота разница между результатами двух определений, выполненных одновременно или с небольшими промежутками времени одним и тем же химиком-аналитиком, не должна превышать 0,10 г азота на 10 г образца. Воспроизводимость результатов измерений — повторяемость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными операторами, в разное время, но приведенных к одним и тем оке условиям измерений (температуре, давлению, влажности и др.). Например, в стандарте на методы определения плотности молока воспроизводимость регламентируется в следующей форме: допускаемое расхождение между результатами определения плотности молока одним типом ареометра в различных условиях (в разное время, в разных местах и разными операторами) не должно превышать 0,8 кг/м3. В процедурах сличения результатов анализа качества однотипной продукции в разных лабораториях рекомендуется оценивать воспроизводимость по методике, изложенной в следующем примере. Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводятся в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой — классом точности. Класс точности СИ — обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Например, для вольтметров нормируют предел допускаемой основной погрешности и соответствующие нормальные условия; пределы допускаемых дополнительных погрешностей; пределы допускаемой вариации показаний; невозвращение указателя к нулевой отметке. У плоско-параллельных концевых мер длины такими характеристиками являются пределы допускаемых отклонений от номинальной длины и плоскопараллельности; пределы допускаемого изменения длины в течение года. У мер электродвижущей силы (нормальных элементов) нормируют пределы допускаемой нестабильности ЭДС в течение года. Обозначение классов точности осуществляется следующим образом. Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита. Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозначаются числами, которые, равны этим пределам, выраженным в процентах. Так, класс точности 0,001 нормальных элементов свидетельствует о том, что их нестабильность за год не превышает 0,001%. Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в НД. СИ с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или каждой измеряемой величины. Так, электроизмерительному прибору, предназначенному для измерений напряжения и сопротивления, могут быть присвоены два класса точности: один как вольтметру, другой как омметру. Присваиваются классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем, что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки (калибровки). Итак, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 122; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.38.184 (0.01 с.) |