Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Антиоксидантные системы клеткиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
I. Ферментные антиоксидантные системы: а) Супероксиддисмутазная. Компоненты: супероксиддисмутаза (СОД), каталаза. Назначение: инактивация супероксидных радикалов (НO2 ˙): НО2˙ + НО2˙ →Н2О2 +O2↑; (реакция проходит за счет СОД)
2 Н2О2 →2Н2O +O2; (реакция за счет каталазы). Нарушения: приобретенные расстройства синтеза ферментов, дефицит меди и железа. б) Глутатионовая. Компоненты: глутатион (Г), глутатионпероксидаза (ГП), глутатионредуктаза (ГР), НАДФ-Н2. Назначение: инактивация и разрушение гидропероксидов липидов: 2ГSН + RООН →Г- S - S - Г + RОН + НOH; (реакция за счет глутатионпероксидзы) Нарушения: наследственно обусловленные и приобретенные нарушения синтеза ферментов, дефицит селена, нарушения пентозного цикла (уменьшение образования НАДФ Н2˙). II. Неферментные антиоксиданты: а) "Истинные" антиоксиданты. Компоненты: токоферолы, убихиноны, нафтохиноны, флавоноиды, стероидные гормоны, биогенные амины. Назначение: инактивация свободных радикалов жирных кислот: RO2 ˙ + In → ROOН + In˙, где In — антиоксидант; In˙ — свободный радикал этого антиоксиданта, обладающий низкой реакционной способностью. Нарушения: гиповитаминоз Е, нарушение регенерации "истинных" антиоксидантов. б) Вспомогательные антиоксиданты. Компоненты: аскорбиновая кислота, серосодержащие соединения — глутатион, цистин, цистеин. Назначение: регенерация "истинных" антиоксидантов: In˙ + In˙ + 2DH →2InН + 2D, где DH — восстановленная, D — окисленная форма вспомогательного антиоксиданта. Нарушения: гиповитаминоз С, нарушения пентозного цикла, дефицит серосодержащих соединений.
Избыточная активация ПОЛ происходит при: а) избыточном образовании первичных свободных радикалов (ультрафиолетовое и ионизирующее излучение, гипероксия, отравление четыреххлористым углеродом, гипервитаминоз D и др.); б) нарушении функционирования антиоксидантных систем (недостаточность ферментов — супероксиддисмутазы, каталазы, глутатионпероксидазы, глутатионредуктазы; дефицит меди, железа, селена; гиповитаминозы Е, С; нарушения пентозного цикла).
Последствия активации ПОЛ: 1. Продукты СПОЛ в составе фосфолипидов мембран резко повышают гидрофильность и проницаемость мембраны, что приводит к усугублению электролитно-осмотического механизма. 2. Механизм электрического пробоя связан с нарушениями электроизолирующих свойств гидрофобного слоя клеточных мембран, что приводит к электрическому пробою мембраны, т.е. к электромеханическому ее разрыву с образованием новых трансмембранных каналов ионной проводимости. 3. Нарушение матричной функции мембран в процессе активации ПОЛ. Нарушается активность мембранных ферментов, поскольку изменяется их липидное микроокружение. Кроме того, в ходе реакций ПОЛ происходит образование "сшивок" между молекулами белков и фосфолипидов, а также окисление сульфгидрильных групп активных центров, что приводит к необратимой инактивации ферментов, например ионных АТФаз, что усиливает расстройства ионного обмена и отек клетки.
Белковые (протеиновые) механизмы повреждения клетки Включают в себя: а) ингибирование ферментов (обратимое и необратимое) – за счет активации перекисного окисления, нарушения матричной структуры липидного бислоя мембраны, дефицита АТФ; б) денатурацию; в) протеолиз, осуществляющийся под действием лизосомальных протеолитических ферментов (катепсинов) и Са-активируемых протеаз. В результате протеолиза могут появляться пептиды, обладающие свойствами биологически активных веществ. С выходом последних из поврежденных клеток может быть связано развитие как местных, так и общих реакций организма - воспаление, лихорадка.
Нуклеиновые механизмы повреждения клетки Основу повреждения клетки могут составлять так называемые нуклеиновые механизмы, обусловленные нарушениями процессов: а) репликации ДНК; б) транскрипции; в) трансляции. Нарушения в клетке в результате повреждения отдельных органоидов Нарушение барьерной функции плазматической мембраны приводит к выравниванию существующих в норме концентрационных градиентов веществ: в клетку поступают ионы Na+, Са2+, Сl¯, а выходят ионы К+, Mg2+, неорганического фосфата, низко- и высокомолекулярные органические соединения (АМФ, АДФ, промежуточные продукты клеточного обмена, белки-ферменты). С повреждениями белков и гликопротеидных комплексов, встроенных в плазматическую мембрану, связаны нарушения систем активного транспорта веществ (Na-K-, Са-насосов; Na-Ca- и Na-H-обменных механизмов); изменения специфических ионных каналов (Na-, К-, Са-каналов); нарушения клеточных рецепторов, воспринимающих внешние регуляторные сигналы (α-и β-адренорецепторов, холинорецепторов и др.); нарушение межклеточных взаимодействий; изменения антигенных свойств клетки. Повреждение митохондрий сопровождается либо угнетением процессов клеточного дыхания, либо эффектом разобщения процессов окисления и фосфорилирования. И в том, и в другом случае результатом расстройств митохондриальных функций будет нарушение энергообеспечения клетки. Повреждение шероховатого эндоплазматического ретикулума приводит к дезагрегации полисом, вследствие чего нарушаются реакции биосинтеза белка в клетке. В результате повреждения гладкого эндоплазматического ретикулума и его ферментных систем страдают процессы детоксикации, микросомального окисления и др. В некоторых клетках, например мышечных, нарушается способность эндоплазматического (саркоплазматического) ретикулума депонировать ионы Са2+, что способствует реализации так называемых кальциевых механизмов повреждения клетки. Повышение проницаемости лизосомальных мембран приводит к выходу в цитоплазму гидролитических ферментов, активация которых в конечном итоге вызывает необратимые изменения клетки — ее аутолиз. Признаки повреждения клетки: Структурные. Обнаруживаются с помощью гистологических и электронномикроскопических методов исследования и являются предметом изучения патологической анатомии. Функциональные. К ним относят: нарушения электрофизиологических процессов (деполяризация плазматической мембраны, изменения свойств возбудимости и проводимости, развитие парабиоза); нарушения сократимости, экзо- и эндоцитоза; нарушения клеточного деления, межклеточных контактов и взаимодействий; изменения в восприятии клеткой нервных и гуморальных регуляторных влияний. Физико-химические, которые включают нарушения со стороны клеточных коллоидов (уменьшение степени дисперсности коллоидов цитоплазмы и ядра, повышение вязкости цитоплазмы, изменение сорбционных свойств по отношению к витальным красителям) и изменения водно-электролитного обмена (увеличение концентрации в цитоплазме ионов натрия и кальция и уменьшение концентрации ионов калия, отек клетки и отдельных ее органелл, накопление ионов водорода — ацидоз повреждения). Биохимические: 1) уменьшение концентрации макроэргических соединений — креатинфосфата и АТФ — и увеличение концентрации продуктов их гидролитического расщепления — креатина, АДФ, АМФ, неорганического фосфата; 2) угнетение тканевого дыхания; 3) разобщение окисления и фосфорилирования; 4) активация гликолиза; 5) активация процессов протеолиза; 6) увеличение интенсивности процессов дезаминирования. Термодинамические. Это декомпартментализация, т.е. нарушение относительной обособленности внутриклеточных отсеков; конформационные изменения макромолекул, происходящие в направлении наиболее выгодного термодинамического состояния (денатурация); распад крупных, более сложных молекул на мелкие, менее сложные; выравнивание концентрационных градиентов как между клеточными отсеками, так и между клеткой и внеклеточной средой.
|
||||
Последнее изменение этой страницы: 2016-06-24; просмотров: 638; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.250.203 (0.01 с.) |