Методические указания по выполнению курсовой работы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методические указания по выполнению курсовой работы



Математическое моделирование задач электроэнергетики с помощью аппарата линейной алгебры и теории графов.

Представление синусоидального тока комплексными величинами

Любое вещественное число можно изобразить графически на числовой оси 0х. Пусть на числовой оси выбрано положительное направление. От т.0, принятой за начало, отложим в определенном масштабе отрезок, длина которого пропорциональна рассматриваемому вещественному числу. Понятие вещественного числа можно обобщить, если ввести в рассмотрение число , образованное парой вещественных чисел , взятых в определенном порядке. Такое число называется комплексным. Вещественные числа составляют соответственно вещественную и мнимую части комплексного числа . Часто используются обозначения

Комплексные числа также можно изображать графически. Это изображение будет двумерным на плоскости, образованной двумя взаимно перпендикулярными осями 0х и 0у. Комплексное число на плоскости х0у представляется точкой ; эту точку также называют изображением комплексного числа и обратно, пару чисел , образующих комплексное число , называют аффиксом точки .

 

Любое комплексное число можно представить в одной из трех форм.

· Алгебраической

· Тригонометрической

· Показательной

Где - модуль комплексного числа

- аргумент комплексного числа

Если аргумент является линейной функцией времени , т.е. , то

И графическое представление комплексной функции аналогично представлению синусоидального тока вращающимся вектором.

О.Комплексная функция , у которой модуль и аргумент равны соответственно амплитуде и аргументу синусоидального тока, называется комплексным мгновенным синусоидальным током.

Закон Ома для участка цепи синусоидального тока без источника ЭДС можно сформулировать таким образом: комплексная амплитуда тока в цепи синусоидального тока равна отношению комплексной амплитуды напряжения к комплексному сопротивлению цепи.

Два комплексных числа и считаются равными, если совпадают изображающие их точки. Это означает, что равенство и имеет место в том, и только в том случае, когда

, .

Т.е. другими словами два комплексных числа равны, когда равны их действительные и комплексные части.

Для алгебраической формы представления комплексных чисел справедливо; при сложении двух комплексных чисел складываются отдельно их действительные и комплексные части.

.

Умножение двух комплексных чисел следует производить как умножение двух алгебраических двучленов, приводя подобные при нулевой и первой степени числа и помня, что .

Если число , то число называется комплексно сопряженным к числу .

Вычитание и деление определяются как операции обратные операциям сложения и умножения, деление на 0 для комплексного числа не определено.

Деление комплексных чисел удобно выполнять с помощью умножения делимого и делителя на число сопряженное делителю. В результате этой, не изменяющей дробь операции, в знаменателе получаем вещественное число.

Матричная алгебра

Матрицей размера называется прямоугольная таблица

,

составленная из элементов и содержащая строк и столбцов.

Положение элементов в таблице определяется двойным индексом , первый означает номер строки, второй номер столбца на пересечении которых стоит данный элемент. Запись группы величин в виде матрицы не предусматривает каких-либо действий над ними. Это лишь одна из форм упорядоченной записи в виде условной таблицы.

Если в матрице строки сделать столбцами, а столбцы строками, то получается транспонированная матрица .

Квадратной матрицей называется матрица, в которой число строк совпадает с числом столбцов. Если элементы в квадратной матрице располагаются симметрично относительно главной диагонали, то такая матрица называется симметричной.

Диагональной матрицей называется матрица, в которой все элементы, кроме стоящих на главной диагонали, равны 0.

Единичная матрица, это диагональная матрица, у которой на главной диагонали стоят 0.

Матричная алгебра это множество матриц плюс множество операций, которые можно выполнять над матрицами. В любой алгебре есть два замечательных числа – это ноль и единица. Ноль не изменяет число при сложении, единица не изменяет число при умножении, т.е.

.

В алгебре матриц также есть подобные элементы – это нулевая матрица, она играет роль нуля в алгебре матриц и это единичная матрица соответствующей размерности, она играет роль единицы в алгебре матриц.

Сложение матриц. Складывать можно только матрицы, имеющие одинаковую размерность. Сложением двух матриц называется операция, при которой складываются элементы, стоящие на одинаковых местах в соответствующих таблицах.

Пример:

Умножение матрицы на число. Для того чтобы умножить матрицу

на число , необходимо каждый элемент этой матрицы умножить на число .

Пример:

Умножение матриц. Умножение матриц в алгебре матриц не коммутативно. Для того, чтобы произведение матриц существовало необходимо чтобы число столбцов первой матрицы равнялось числу строк второй матрицы. Если матрица имеет размерность , а матрица размерность , то матрица имеет размерность . В качестве элементов расположенных на пересечении -той строки и -го столбца матрицы произведения, принимают суммы попарных произведений, расположенных на одинаковых местах указанных строк матрицы – множимого и столбцов матрицы- множителя.

Так как произведение матриц не коммутативно, следует различать умножение матрицы на некоторую другую матрицу слева и справа, причем в общем случае эти матрицы могут иметь разную размерность.

Пример:



Поделиться:


Последнее изменение этой страницы: 2016-06-19; просмотров: 643; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.236.62 (0.008 с.)