Виды физических величин и единиц. Международная система единиц физических величин. Кратные и дольные единицы. Производные единицы.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Виды физических величин и единиц. Международная система единиц физических величин. Кратные и дольные единицы. Производные единицы.



В физике и технике едини́цы измере́ния (едини́цы физи́ческих величи́н, едини́цы величи́н[1]) используются для стандартизированного представления результатов измерений. Использование термина единица измерения противоречит нормативным документам[2] и рекомендациям метрологических изданий[3], однако он широко употребляется в научной литературе[4]. Численное значение физической величины представляется как отношение измеренного значения к некоторому стандартному значению, которое и является единицей измерения. Число с указанием единицы измерения называется именованным.

Различают основные и производные единицы. Основные единицы в данной системе единиц устанавливаются для тех физических величин, которые выбраны в качестве основных в соответствующей системе физических величин. Так, Международная система единиц (СИ) основана на Международной системе величин(англ. International System of Quantities, ISQ), в которой основными являются семь величин: длина, масса, время, электрический ток, термодинамическая температура,количество вещества и сила света. Соответственно, в СИ основными единицами являются единицы указанных величин.

Размеры основных единиц устанавливаются по соглашению в рамках соответствующей системы единиц и фиксируются либо с помощью эталонов (прототипов), либо путём фиксации численных значений фундаментальных физических постоянных.

Производные единицы определяются через основные путём использования тех связей между физическими величинами, которые установлены в системе физических величин.

Существует большое количество различных систем единиц, которые различаются как системами величин, на которых они основаны, так и выбором основных единиц.

Государство, как правило, законодательно устанавливает какую-либо систему единиц в качестве предпочтительной или обязательной для использования в стране. В Российской Федерации в соответствии с решением Правительства применяются единицы величин системы СИ[2]. Метрология непрерывно работает над улучшением единиц измерения и основных единиц и эталонов.

Правила написания обозначений единиц измерений при производстве научной литературы, учебников и другой полиграфической продукции определены ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений». В печатных изданиях допускается применять либо международные, либо русские обозначения единиц. Одновременно применение обоих видов обозначений в одном и том же издании не допускается, за исключением публикаций по единицам физических величин.[5]

Руководствуясь этими правилами, в 1960 г. XI Генеральная конференция по мерам и весам приняла Международную систему единиц(Систему интернациональную - СИ) с основными единицами метр (m), килограмм (kg), секунда (s), ампер (A), кельвин (K), кандела (cd), моль (mol). Кроме того в качестве стандартных в системе СИ были признаны единицы, не относящиеся ни к основным ни к производным и названные дополнительными, такие как радиан (rad) и стерадиан (sr). Кроме системы СИ, используется система единиц СГС (сантиметр, грамм, секунда).

Единицы, не входящие ни в одну из известных систем, называются внесистемными, например, литр, градус, процент, децибел и т.п. Единица, которая в целое число раз больше системной или внесистемной, называется кратной единицей. Например, километр, тонна, минута, декалитр и т.п. Единица, которая в целое число раз меньше системной или внесистемной, называется дольной. Например, миллиметр, микросекунда, миллилитр и т.п. Обозначения кратных и дольных величин приводятся в справочниках.

), а остальные - со строчных (m, kg, s). Допускается использование русских обозначений (Вт, Вб, Ом, м, кг, с).Обозначения единиц, наименование которых происходит от фамилий, например Ампер, Ватт, Вебер, Ом и т.п., пишутся с прописных букв (A, W, Wb,

 

Кратные единицы — единицы, которые в целое число раз превышают основную единицу измерения некоторой физической величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений кратных единиц:

Дольные единицы, составляют опредёленную долю (часть) от установленной единицы измерения некоторой величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений дольных единиц:

 

 

Приставки СИ (десятичные приставки) — приставки перед названиями или обозначениями единиц измерения физических величин, применяемые для формирования кратных и дольных единиц, отличающихся от базовой в определённое целое, являющееся степенью числа 10, число раз. Десятичные приставки служат для сокращения количества нулей в численных значениях физических величин. Рекомендуемые для использования приставки и их обозначения установлены Международной системой единиц (СИ). ГОСТ 8.417-2002, регламентирующий применение СИ в России

 

Производные единицы могут быть выражены через основные с помощью математических операций: умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость — это расстояние, которое тело проходит в единицу времени; соответственно, единица измерения скорости — м/с (метр в секунду).

Классификация измерений.

Измерения как экспериментальные процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Наиболее распространена классификация видов измерений в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Прямые измерения - это такие измерения, при которых искомое значение физической величины определяются непосредственно путем сравнения с мерой этой величины.

Косвенное измерение — измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Мерное параллельно или вблизи мерного.

· сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений. (Проводим прямое измерение напряжения, проводим прямое измерение тока, потом на основании полученных ДВУХ чисел получаем косвенное «измерение» сопротивления)

Совместное измерение — одновременное измерение нескольких неодноименных величин для нахождения зависимости между ними. При этом решается система уравнений.

· определение зависимости сопротивления от температуры. При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

· определение зависимости тока от напряжения: меняем напряжение, и смотрим, как при этом меняется ток, проводим соответствующие измерения меняющихся напряжения и тока, получаем зависимость тока от напряжения, а потом определяем, что это за зависимость, и все её параметры.

Совокупное измерение — это проведение ряда измерений (чаще всего прямых, но, вообще-то, измерения из ряда могут быть любыми — вспомните, как получаются сложные функции в математике) нескольких величин одинаковой размерности в различных сочетаниях, после чего искомые значения величин находятся решением системы уравнений. Число уравнений при этом должно быть равно числу измерений. (см. также Компенсационный метод измерений)

· измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

· определение масс гирь набора гирь (1, 2, 2, 5) кг с использованием одной эталонной гири 1 кг и компаратора масс («весов», предназначенных для определения разности масс двух грузов). Компарируют, например:

— эталон с гирей 1 кг из набора; — эталон + гирю 1 кг из набора с гирей 2 кг из набора; — эталон + гирю 1 кг из набора с другой гирей 2 кг из набора; — гири 1 + 2 + 2 кг из набора с оставшейся гирей 5 кг из набора.


6.Основные характеристики измерений (понятие о принципах, методах и точности измерений).

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

По характеру зависимости измеряемой величины от времени измерения разделяются на

· статические, при которых измеряемая величина остается постоянной во времени;

· динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими - измерения пульсирующих давлений, вибраций.

По способу получения результатов измерений их разделяют на

· прямые;

· косвенные;

· совокупные;

· совместные.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой , где - искомое значение измеряемой величины, а - значение, непосредственно получаемое из опытных данных.

При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры и др.).

Косвенные - это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.

Совокупные - это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при пря-мых измерениях различных сочетаний этих величин.

Совместные - это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними.

В качестве примера можно назвать измерение электрического сопротивления при 200С и температурных коэффициентов измерительного резистора по данным прямых из-мерений его сопротивления при различных температурах.

По условиям, определяющим точность результата, измерения делятся на три класса:

1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например абсолютного значения ускорения свободного падения, гиромагнит-ного отношения протона и др.).

К этому же классу относятся и некоторые специальные изме-рения, требующие высокой точности.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого за-данного значения.

К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.

Примером абсолютных измерений может служить определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

В качестве примера относительных измерений можно привести измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 м3 воздуха к количеству водяных паров, которое насыщает 1 м3 воздуха при данной температуре.

Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений - совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.

Погрешность измерений - разность между полученным при измерении X' и истинным Q значениями измеряемой величины:

Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а так-же недостаточным опытом наблюдателя или особенностями его органов чувств.

Точность измерений - это характеристика измерений, отражающая близость их результатов к истинно-му значению измеряемой величины.

Количественно точность можно выразить величиной, обратной модулю относительной погрешности:

Например, если погрешность измерений равна , то точность равна .

Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т.е. таких погрешностей, которые остаются постоян-ными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в част-ности, от того, насколько действительный размер единицы, в ко-торой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Важнейшей характеристикой качества измерений является их достоверность; она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.

Наличие погрешности ограничивает достоверность измерений, т.е. вносит ограничение в число достоверных значащих цифр числового значения измеряемой величины и определяет точность измерений



Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.185.78 (0.012 с.)