Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема: построение и анализ схем иис, телеизмерительных систем.Содержание книги
Поиск на нашем сайте
Цель работы: Построить и проанализировать схемы ИИС, телеизмерительных систем. Общие положения: Измерительные информационные системы (ИИС) – это совокупность функционально объединенных измерительных, вычислительных и других вспомогательных технических средств для получения измерительной информации, ее преобразования, обработки с целью представления потребителю в требуемом виде, либо автоматического осуществления логических функций измерения, контроля, диагностики, идентификации и т. п. В зависимости от выполняемых функций ИИС реализуются в виде: · измерительных систем (ИС); · систем автоматического контроля (САК); · систем технической диагностики (СТД); · систем распознавания образов (идентификации) (СРО); · телеизмерительных систем (ТИС). В СТД, САК, СРО измерительная система входит как подсистема. Назначение любой измерительной информационной системы, необходимые функциональные возможности, технические характеристики и другие определяются объектом исследования, для которого данная система создается. Назначение измерительной информационной системы можно определить как целенаправленное оптимальное ведение измерительного процесса и обеспечение смежных систем высшего уровня достоверной информацией. Исходя из этого основные функции измерительной информационной системы – получение измерительной информации от объекта исследования, ее обработка, передача, представление информации оператору или/и ЭВМ, запоминание, отображение и формирование управляющих воздействий. Классификация ИИС. Степень достижения функций принято характеризовать с помощью критериев измерения. ИИС оптимизируют по многим частичным критериям таким, как точность, помехоустойчивость, надежность, пропускная способность, адаптивность, сложность, экономичность и др. ИИС обычно классифицируют: 1. По разновидности входных величин: Поведение во времени: неизменное, изменяющееся; Расположение в пространстве: сосредоточенное, распределенное; Характер величин: непрерывный, дискретный; 2. По выходной информации – измерительные (на выходе количественная измерительная информация), контрольно-диагностические и распознающие (на выходе количественные суждения о состоянии объектов).
3. По принципам построения: Наличие/отсутствие специального канала связи; Порядок выполнения операций получения информации; Сигналы, используемые в ИИС: аналоговые, кодоимпульсные. 4. В зависимости от способа организации передачи информации между функциональными блоками (ФБ) различают цепочечную, радиальную и магистральную структуры ИИС (рис.1). Рис.1. Основные структуры ИИС Требования, предъявляемые к ИИС. Состав и структура конкретной ИИС определяется общими техническими требованиями, установленными ГОСТом, и частными требованиями, содержащимися в техническом задании на ее создание. ИИС должна управлять измерительным процессом или экспериментом в соответствии с принятым критерием функционирования; выполнять возложенные на нее функции в соответствии с назначением и целью; обладать требуемыми показателями и характеристиками точности, надежности и быстродействия, отвечать экономическим требованиям, предъявляемым к способам и форме представления информации, размещения технических средств, быть приспособленной к функционированию с ИИС смежных уровней иерархии и другими ИИС, т.е. обладать свойствами технической, информационной и метрологической совместимости, а также допускать возможность дальнейшей модернизации и развития. Упрощенная схема взаимодействия основных компонентов ИИС представлена на рис.2.
Рис.2. Основные компоненты ИИС: ОО – организационное обеспечение, ОП – оперативный персонал, ИО – информационное обеспечение, ТО, ПО – техническое и программное обеспечение, МО – метрологическое обеспечение
Процессом функционирования ИИС, как и любой другой технической системы, является целенаправленное преобразование входной информации в выходную. Это преобразование выполняется либо автоматически комплексом технических средств (КТС) (техническим обеспечением), либо совместно-оперативным персоналом и КТС в сложных ИИС. Чтобы люди и КТС могли функционировать оптимально, необходимы соответствующие инструкции и правила. Эту задачу выполняет организационное обеспечение. Математическое, программное и информационное обеспечение входит в состав только ИИС с цифровым вычислительным комплексом.
Математическое обеспечение – это модели и вычислительные алгоритмы. Программное обеспечение гарантирует конкретную реализацию вычислительных алгоритмов и алгоритмов функционирования системы и охватывает круг решений, связанных с разработкой и эксплуатацией программ. Информационное обеспечение определяет способы и конкретные формы информационного отображения состояния объекта исследования в виде документов, диаграмм, графиков, сигналов для их представления обслуживающему персоналу и ЭВМ для дальнейшего использования в управлении. Всю систему в целом охватывает метрологическое обеспечение. Технические средства ИИС состоят из следующих блоков: 1) множества первичных измерительных преобразователей (датчиков); 2) множества вторичных измерительных преобразователей; 3) множества элементов сравнения и мер; 4) блока цифровых устройств; 5) множества элементов описания – норм; 6) множества преобразователей сигнала, средств отображения, памяти и др. Блоки 1-6 используются в цифровых ИИС, а 1-3 и 6 – в аналоговых ИИС. При наличии в составе ИИС ЭВМ информация к ЭВМ может поступить непосредственно от устройств обработки и/или хранения.
ВИДЫ ИИС ИИС, предназначенные для измерения и хранения информации, носят название измерительных систем (ИС). ИС могут быть ближнего или дальнего действия. На вход системы поступает множество изменяющихся во времени и/или распределенных в пространстве величин. Упрощенная классификация ИС представлена на рис.3.
Рис.3. Упрощенная классификация ИС
Важнейшими характеристиками ИС являются эффективность, полнота выполняемых функций, достоверность, надежность, быстродействие, характеристики входов и выходов, метрологические параметры. Многоканальные ИС параллельного действия – это один из наиболее распространенных видов ИИС, обладающих наиболее высокой надежностью и более высоким быстродействием при одновременном получении информации, возможностью подбора средств измерений к замеряемым величинам, что может исключить унификацию сигналов. Однако они имеют повышенные сложность и стоимость (рис.4). Рис.4. Структурная схема многоканальной ИС: а – аналоговая мера, б – цифровая мера
В отличие от ИС параллельного действия схема мультиплицированной системы (рис.5) включает только одну общую меру для всех каналов. В этих системах измерительная величина сравнивается с линейно изменяющейся величиной. При фиксированных моментах начала развертки и равенствах x и хk может быть определен интервал времени tл пропорциональный значению хk. В многоканальной системе возникают трудности в разделении сигналов от элементов сравнения. В этом случае прибегают к специальным мерам.
Рис.5. Структурная схема мультиплицированной системы
Сканирующие (последовательного действия) ИС. С помощью одного канала они выполняют последовательно измерения множества величин и имеют сканирующее устройство (СкУ), которое перемещает датчик в пространстве (рис.6).
Рис.6. Структурная схема сканирующей ИС
Траектория движения при этом может быть запрограммирована (пассивное сканирование) или изменяться в зависимости от получаемой измерительной информации (активное сканирование). Сканирующие системы применяют для измерения температурных полей, нахождения экстремальных значений исследуемых полей (давлений, механических напряжений и т.д.) или нахождения одинаковых значений параметра. Недостаток систем – малое быстродействие.
Многоточечные (последовательно-параллельного действия) ИС. Их применяют в сложных объектах с большим числом измеряемых параметров (рис.7). Рис.7. Структурная схема многоточечной ИС: а – с одним коммутатором, б – с двумя коммутаторами
В этих системах при множестве датчиков (Д), имеется всего один измерительный тракт (рис.7, а) и измерительный коммутатор SW, либо множество датчиков (Д) и множество индикаторов (В) (рис.7, б). Измерительные коммутаторы служат для согласования параллельных и последовательных элементов во времени. Они должны обладать определенными метрологическими характеристиками (погрешностью, быстродействием и др.). Лучшие по точности результаты дают контактные измерительные коммутаторы (10-5...10-6), но они имеют низкое быстродействие, малое количество коммутируемых цепей и не работают по заявкам. Бесконтактные измерительные коммутаторы имеют более низкую точность, но значительно лучшие остальные показатели. Недостаток этих систем – пониженное быстродействие и точность за счет использования ключей коммутаторов. Многомерные ИС. Они основаны на одновременном измерении различных свойств в среде, зависящих от ее состава, с последующей математической обработкой результатов измерения. Измеряемыми могут быть, например, электропроводность и плотность, температура кипения и показатель преломления или удельный вес и т.д. Во всех случаях, независимо от характера выполняемого расчета, возможность измерения связана с возможностью составления системы независимых уравнений: где x – измеряемые параметры анализируемой среды; С – концентрации компонентов анализируемой среды; f – функции, выражающие характер зависимости измеряемых параметров от состава среды. Выполнение функциональной независимости уравнений системы обеспечивает принципиальную возможность ее решения. Данные систем обеспечивают, таким образом, избирательное определение величин интересующего нас компонента в многокомпонентной среде путем применения недостаточно ИИС. Аппроксимирующие измерительные системы (АИС). Их применяют при необходимости количественно оценить или восстановить исходную величину, являющуюся функцией некоторого аргумента. Есть два пути выполнения этих измерений: первый – измерение дискретной величины и восстановление ее путем аппроксимации с помощью многочленов; второй – измерение коэффициентов многочленов, аппроксимирующих исходную функцию на всем интервале ее исследования. Основные области применения АИС – это измерение статистических характеристик случайных процессов, характеристик нелинейных элементов, сжатие, фильтрация, генерация сигналов заданной формы.
Системой телеизмерения называется совокупность устройств на приемных и передающих сторонах и каналах связи для автоматического измерения одного или ряда параметров на расстоянии. Структурная схема системы телеизмерений представлена на рис.8. Рис.8. Структурная схема телеизмерительной системы: ПП – первичные преобразователи, ООИ – блок обработки и отображения информации, КП – контрольные пункты, ПКС – преобразователи кодов и сигналов, КС – канал связи
Можно указать следующие основные способны построения телеизмерительной системы: · по виду модуляции: интенсивные (тока, напряжения), времяимпульсные (ВИМ и ШИМ), частотные (ЧИМ и ЧМ), кодоимпульсные (двоичные и недвоичные), цифровые и адаптивные; · по виду телеизмеряемого параметра: аналоговые и цифровые; · по числу каналов связи: одноканальные и многоканальные; · по характеристике каналов связи: проводные и радиоканальные; · по виду телеизмерения: непрерывные; по вызову; по выбору. При этом могут производиться телеизмерения текущих, статистических и интегральных значений параметров. Каналы бывают совмещенные, симплексные и дуплексные. Установлены следующие классы точности устройств телеизмерений: 0,25; 0,4; 0,6; 1,0; 1,6; 2,5; 4,0. Сравнительная оценка систем телеизмерений ведется: · по реально достижимой минимальной погрешности; · помехоустойчивости; · надежности системы; · возможности работы с различными каналами связи; · стоимости; · возможности унификации и массового производства унифицированных устройств. Лучшие системы – это системы кодоимпульсных телеизмерений. Автоконтроль. Он устанавливает соответствие между состоянием объекта контроля и заданной нормой без непосредственного участия человека. Соответствие может устанавливаться для данного или для будущего состояния (прогнозирующий контроль). Автоконтроль освобождает человека от утомительных рутинных операций в самых разнообразных сферах его деятельности: на транспорте, в сельском хозяйстве, при научных исследованиях, обучении и т.д. Необходимым условием осуществления автоконтроля в любом его применении является знание установленной нормы. Норма может быть выражена в количественной или качественной форме. В последнем случае нормой может быть, например, определенное качество усвоения материала при обучении. В дальнейшем ограничимся автоконтролем с нормой только в количественной форме. При автоконтроле, в отличие от автоматических измерений, нет необходимости знать численные значения контролируемых величин, достаточно установить значения абсолютного или относительного допуска на отклонение от нормы (например, не больше 5 %). Отклонение за пределы установленной нормы вызывают предупредительный, аварийный или другие сигналы. Формирование таких сигналов – одна из главных функций автоконтроля.
Система автоконтроля – это комплекс устройств, осуществляющих автоматический контроль одной или большого количества величин, требующие значительной обработки информации для суждения об отклонении от установленной нормы, например, обработка изделий в результате статистической обработки результатов контроля. В подавляющем большинстве случаев системы автоконтроля совмещают функции контроля и измерения, т.е. являются контрольно-измерительными системами. Они выполняют функции контроля, а в случае необходимости расширить информацию о контролируемом параметре осуществляют процесс измерения. Структурные схемы систем для автоматического контроля большого количества величин приведены на рис.9. Они похожи на схемы ИС. Здесь, так же как и на рис.7, фигурные скобки обозначают наличие от одного до п одинаковых узлов внутри скобок. На рис.9 норма выражается в аналоговой форме. В отличие от рис.7, здесь на элемент сравнения подается не мера, а норма. Кроме того, на выходе сравнивающего устройства включено устройство формирования сигналов ФС, формирующее сигнал отклонения от заданной нормы, который отражается и (или) записывается. Схема может быть реализована с параллельным или последовательным сбором информации. В первом случае она выражается в п параллельно работающих каналах автоконтроля с п датчиками, и элементами сравнения, уставками (нормами), и узлами формирования сигналов и п устройствами отображения информации. Рис.9. Структурные схемы систем автоматического контроля с аналоговой нормой
В отличие от этого при последовательном сборе информации на выходе п датчиков и на входе п установок включаются коммутаторы, работающие синхронно и синфазно (рис.9, б). В системах автоконтроля, реализуемых по схеме рис.9, норма должна храниться в аналоговой форме, что связано с техническими трудностями. Для устранения этого недостатка хранение нормы осуществляется в цифровой форме (магнитная и другая запись), а между устройством хранения нормы и элементом сравнения включается ЦАП аналогично рис.4, а. Возможен и другой вариант хранения нормы в цифровой форме, но с АЦП на выходе датчиков и устройством сравнения в цифровой форме, например в виде дешифратора кодов (аналогично рис.4, б). Системы автоконтроля часто выполняют дополнительные функции, не имеющие прямого отношения к автоконтролю. К ним относятся: · промежуточные преобразования сигналов; · формирование тестовых (испытательных) сигналов; · операция счета (изделий и т.п.); · измерения (аналоговые или цифровые); · математическая обработка результатов контроля для прогнозирования и выполнения других операций; · диагностические функции. Системы автоматического контроля, в которых используются устройства сравнения типа "больше-меньше", называют системами допускового контроля. В подобных системах возможно изменение зоны (уставки) в процессе контроля, при этом создается представление о степени близости контролируемой величины к интересующему состоянию. Такие системы принято называть системами спорадического контроля.
Порядок работы: 1. Ознакомиться с руководством по выполнению практической работы, получить задание у преподавателя. 2. Изучить материалы методических указаний и литературы. 3. Подготовить отчет. Отчет по работе должен содержать: 1. Тему и цель работы. 2. Выполненное задание Рекомендуемая литература: Основная литература: 1. Афонин, А. М. Теоретические основы разработки и моделирования систем автоматизации: Учебное пособие для сред. проф. образования / А.М. Афонин, Ю.Н. Царегородцев, А.М. Петрова и др. - М.: Форум: ИНФРА-М, 2014. - 192 с. 2. Иванов, А.А. Автоматизация технологических процессов и производств: Учебное пособие для высш. учеб. заведений.- 2-e изд., испр. и доп. - М.: Форум: ИНФРА-М, 2015. - 224 с. Дополнительная литература: 1. Шишмарев В.Ю. Автоматика: Учебник для сред. проф. образования.- М.: Автоматика, 2005.- 288 с. Практическая работа №18
|
|||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 676; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.249.84 (0.01 с.) |