Принципиальные электрические схемы типовых регуляторов



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Принципиальные электрические схемы типовых регуляторов



Современные типовые регуляторы используют в качестве активного элемента операционный усилитель (ОУ). Основными достоинствами ОУ являются:

- простота расчета схем, в состав которых входит операционный усилитель;

- стабильность характеристик ОУ и схем на их основе;

- высокие параметры согласования ОУ с другими схемами – малый входной ток (пико- и микроамперы – 10-9…10-6), высокое входное сопротивление (единицы – десятки мегаом), низкое выходное сопротивление (единицы и доли ома);

- дешевизна ОУ.

ОУ представляет микросхему, у которой имеется минимум: два вывода, на которые подаются входные сигналы, один вывод выходного сигнала и два вывода двухполярного питания. Возможны также выводы коррекции характеристик ОУ и вывод земли.

Вывод, потенциал на котором φП и выходное напряжение uВЫХ, имеют одинаковые знаки, называется прямым входом. А вывод, потенциал на котором φИ и выходное напряжение uВЫХ, имеют противоположные знаки, называется инверсным входом. При подаче сигнала φ на один из входов, второй должен быть заземлен.

Входным напряжением uВХюОУ ОУ является разность потенциалов прямого и инверсного входов:

uВХ.ОУ =φП – φИ

Коэффициент усиления ОУ очень велик

Из-за большого коэффициента усиления КОУ выходное напряжение uВЫХ достигает значения насыщения (около |Е-1| В) при малом значении входного напряжения . При таком малом значении uВХ допустимо в расчетах принимать uВХ.ОУ ≈0, что существенно упрощает расчеты схем на базе ОУ.

Основная схема включения ОУ приведена на рис.1.58. Прямой вход ОУ заземлен через резистор RTK, поэтому потенциал прямого входа φП нулевой. В активном режиме работы ОУ, когда выходное напряжение uВЫХ изменяется прямо пропорционально входному напряжению uВХ схемы, входное напряжение ОУ uВХ.ОУ ≈0 и, поэтому, потенциалы обоих входов ОУ равны между собой: φИП . Так как φП=0, то будет также φИ=0.

Рассчитаем по формуле метода двух узлов потенциал φИ инверсного входа:

(1.63)

После подстановки φИ=0 в (1.63) получим

где передаточная функция схемы:

(1.64)

 

Резистор температурной компенсации RTK служит для обеспечения температурной стабильности схемы. Сопротивление резистора выбирается из условия равенства активных проводимостей цепей протекания постоянного по прямому и инверсному входам

(1.65)

Схема П-регулятора приведена на рис.1.59. Расчеты П-регулятора:

Схема И-регулятора приведена на рис.1.60. Расчеты И-регулятора:

Схема ПИ-регулятора приведена на рис.1.61. Расчеты ПИ-регулятора:

Схема ПИД-регулятора приведена на рис.1.62. Расчеты ПИД-регулятора:

 

Порядок работы:

1. Ознакомиться с руководством по выполнению практической работы,

получить задание у преподавателя.

2. Изучить материалы методических указаний и литературы.

3. Подготовить отчет.

Отчет по работе должен содержать:

1.Тему и цель работы.

2. Выполненное задание

Рекомендуемая литература:

Основная литература:

1. Афонин, А. М. Теоретические основы разработки и моделирования систем автоматизации: Учебное пособие для сред. проф. образования / А.М. Афонин, Ю.Н. Царегородцев, А.М. Петрова и др. - М.: Форум: ИНФРА-М, 2014. - 192 с.

2. Иванов, А.А. Автоматизация технологических процессов и производств: Учебное пособие для высш. учеб. заведений.- 2-e изд., испр. и доп. - М.: Форум: ИНФРА-М, 2015. - 224 с.

Дополнительная литература:

1. Шишмарев В.Ю. Автоматика: Учебник для сред. проф. образования.- М.: Автоматика, 2005.- 288 с.

Практическая работа №14

Тема: Построение и анализ схем АЦП.

Цель работы:построить и проанализировать схемы АЦП.

Общие положения:

Параллельные АЦП

Чаще всего в качестве пороговых устройств параллельного АЦП используются интегральные компараторы. Схема типичного АЦП параллельного типа приведена на рисунке 1.

 

Рис.1. АЦП параллельного типа

Довольно простая схема. Число компараторов DA выбирается с учетом разрядности кода. Например, для двух разрядов понадобится три компаратора, для трех - семь, для 4-х - 15. Опорные напряжения задаются с помощью резистивного делителя. Входное напряжение Uвх подается вход компараторов и сравнивается с набором опорных напряжений, снимаемых с делителя. На выходе компаратора, где входное напряжение больше соответствующего опорного, будет лог. 1, на остальных - лог. 0. Естественно, пир входном напряжении равном 0 на выходах компараторов будут нули. При максимальном входном напряжении на выходах компараторов будут лог. 1. Шифратор предназначен для преобразования полученной группы нулей и единиц в "нормальный" двоичный код.

Параллельный АЦП является самым быстродействующим из всех, поскольку компараторы работают одновременно. Но есть весьма существенный недостаток. Как было сказано выше, разрядность такого АЦП определяется числом компараторов (ну и резиков, конечно). При малой разрядности это еще не так хреново. А когда разрядов 10-12. Для 10-ти разрядного АЦП понадобится 210 - 1 = 1023 штук. Вот это уже не хорошо. Отсюда вытекает высокая стоимость параллельных АЦП. Кстати, подбором сопротивлений резиков можно выбрать закон преобразования - линейный, логарифмический.

Последовательные АЦП

Последовательные АЦП бывают последовательного счета и последовательного приближения. Типичная схема АЦП последовательного счета приведена на рисунке 2.

 

Рис. 2. АЦП последовательного счета

На схеме буквами и символами обозначены следующие элементы: К - компаратор, & - схема "И", ГТИ - генератор тактовых импульсов, СТ - счетчик, #/A - ЦАП. На один вход компаратора подается входное напряжение, на второй - напряжение с выхода ЦАП. В начале работы счетчик устанавливается в нулевое состояние, напряжение на выходе ЦАП при этом равно нулю, а на выходе компаратора устанавливается лог. 1. При подаче импульса разрешения "Строб" счетчик начинает считать импульсы от генератора тактовых импульсов, проходящих через открытый элемент "И". Напряжение на выходе ЦАП при этом линейно нарастает, пока не станет равным входному. При этом компаратор переключается в состояние лог. 0 и счет импульсов прекращается. Число, установившееся на выходе счетчика и есть пропорциональный входному напряжению цифровой код. Выходной код остается неизменным пока длится импульс "Строб", после снятия которого счетчик устанавливается в нулевое состояние и процесс преобразования повторяется.

Такие АЦП имеют низкое быстродействие. Достоинством является сравнительная простота построения.

Более быстродействующим являются АЦП последовательного приближения, называемый также АЦП с поразрядным уравновешиванием. АЦП последовательного приближения показан на рисунке 3. В основе работы таких преобразователей лежит принцип дихотомии - последовательного сравнения измеряемой величины с ½, ¼, ⅛ и т. п. от возможного ее максимального значения.

 

Рис. 3. АЦП последовательного приближения

В таком АЦП используется спешиал регистр - регистр последовательных приближений. При подаче импульса "Пуск" на выходе старшего разряда регистра появляется лог. 1, а на выходе ЦАП напряжение U1. Если это напряжение меньше входного, то в следующем по счету разряде регистра записывается еще лог. 1. Если же входное напряжение меньше, то лог. 1 в старшем разряде отменяется. Таким образом, методом проб перебираются все разряды - от старшего до младшего. На всю операцию преобразования требуется импульсов ГТИ всего в два раза больше количества разрядов. То есть АЦП последовательных приближений намного шустрее АЦП последовательного счета.



Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.16.13 (0.01 с.)