Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Бесконечно малые величины и их св-ваСодержание книги Поиск на нашем сайте
Функ. f(x) наз. бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если .Бесконечно малой функ. может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет. Пример. Функ. f(x) = xn явл. бесконечно малой при х®0 и не явл. бесконечно малой при х®1, т.к. . Теорема. Для того, чтобы функ. f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие f(x) = A + a(x),где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а). БЕСКОНЕЧНО БОЛЬШАЯ ФУНК. – функ. переменного х, к-рая в данном процессе изменения х становится и остается по абсолютной величине больше любого наперед заданного числа. Точнее, функ.f(x), определенная в окрестности точки х0, наз. бесконечно большой функ. при х, стремящемся к x0, если для любого числа М > 0 найдется такое число δ = δ (М) > 0, что для всех х ≠ х0 и таких, что |х - х0 | < δ, выполняется неравенство |f(x)| > M. Этот факт записывается так:
Аналогичным образом определяются
означает, что для любого М > 0 найдется такое δ = δ (M) > 0, что для всех z < - δ выполняется неравенство f(x) > M. Изучение Б. б. ф. может быть сведено к изучению бесконечно малых функ., т. к. если f(x) есть Б. б. ф., то функция ψ (х) = 1/f(x) явл. бесконечно малой. Непрерывность функции в точке. Определение 1: Функ. f(x) наз. непрерывной функ. в точке A, если сущ. предел данной функ. при аргументе стремящимся к A и он равен f(a), т.е. Критерий непрерывности: Для любого сколь угодно малого числа эпсилон, сущ. такое число дельта, зависящее от эпсилон, что из того, что для любых иксов удовлетворяющих неравенству следует, что отличия значений функ. в данных точках будет сколь угодно мало. Критерий непрерывности функции в точке: Функ. будет непрерывна в точке A тогда и только тогда, когда она будет непрерывна в точке A и справа и слева, т.е чтобы в точке A сущест. два односторонних предела, они были равны между собой и равнялись значению функ. в точке A. Определение 2: Функ.непрерывна на множестве, если она непрерывна во всех точках этого множества. Непрерывность сложной функции и обратной функции. Пусть функ. j(t) непрерывна в точке t0 и функ. f(x) непрерывна в точке х0=j(t0). Тогда функ. f(j(t)) непрерывна в точке t0. Доказательство. Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем Выписывая подчеркнутые кванторы, получим, что что и говорит о том, что f(j(t)) непрерывна в точке t0. < Обратите внимание на следующие детали: а) т.к. x=j(t), то |j(t)-j(t0)|<d может быть записано как |x-x0|<d, и f(x) превращается в F(j(t)); б) при определении непрерывности j(t) в точке t0 в первом кванторе стоит буква d. Это необходимо для согласования с квантором в предыдущей строке и взаимного уничтожения Любая другая буква на этом месте не дала бы верного результата. Обратная Пустьf(x)-- функ, непрерывная на отрезке [a,b].Предположим, что f(x) монотонна на [a,b]; пусть, для определённости, она монотонно возрастает: из x1<x2, следует, что f (x1)< f (x2) Тогда образом отрезка [a,b] будет отрезок [c,d], где c=f(a), d=f(b)(действительно, непрерывная функ. принимает любое промежуточное между f(a), f (b)значение, причём ровно один раз, что следует из монотонности). Поэтому сущ. обратная к y =f(x) функ. функ., действующая из [c,d]в [a,b].Очевидно, что монотонно возрастает. (Если бы функция f была монотонно убывающей, то и обратная к ней функ. тоже была бы монотонно убывающей.) Теорема. Пусть f -- непрерывная монотонная функция, .Тогда обратная к f функ. непрерывна на отрезке [c,d]. Непрерывность элементарных функций Все элементарные функ. явл. непрерывными в любой точке свой области определения. Функ.наз. элементарной, если она построена из конечного числа композиций и комбинаций (с использованием 4 действий - сложение, вычитание, умножение и деление) основных элементарных функ. Множество основных элементарных функ. вкл. в себя: 1.Алгебраические многочлены 2.Рациональные дроби 3.Степенные функ. xp 4.Показательные функ. ax 5.Логарифмические функ. 6.Тригонометрические функ. 7.Обратные тригонометрические функции
36) Теорема 3 (теорема Вейерштрасса). Всякая непрерывная на замкнутом ограниченном множестве функ. достигает на нем своего наибольшего и наименьшего значений. Непрерывность функ. на отрезке Функ. f (x) наз. непрерывной на интервале (a, b), если она непрерывна в каждой точке этого интервала. Функ. f (x) наз. непрерывной на отрезке [ a, b ], если она непрерывна на интервале (a, b), непрерывна справа в точке a и непрерывна слева в точке b. Замечание. Функ., непрерывная на отрезке [ a, b ] может быть разрывной в точках a и b (рис. 1) Множество функ., непрерывных на отрезке [ a, b ] обозначается символом C [ a, b ]. Свойства функ., непрерывных на отрезке Теорема 1 (об ограниченности непрерывной функции). Если функ. f (x) непрерывна на отрезке [ a, b ], то она ограничена на этом отрезке, т.е. существует такое число C > 0, что " x О[ a, b ] выполняется неравенство | f (x)| ≤ C. Теорема 2 (Вейерштрасс). Если функ. f (x) непрерывна на отрезке [ a, b ], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m, т.е. сущ. точки α, β О [ a, b ] такие, что m = f (α) ≤ f (x) ≤ f (β) = M для всех x О [ a, b ] (рис.2). Наибольшее значение M обозначается символом max x О [ a, b ] f (x), а наименьшее значение m — символом min x О [ a, b ] f (x). Теорема 3 (о существовании нуля). Если функ. f (x) непрерывна на отрезке [ a, b ] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a, b) найдется по крайней мере одна точка ξ в которой f (ξ) = 0. Геометрический смысл теоремы состоит в том, что график функ., удовлетворяющей условиям теоремы, обязательно пересечет ось OX (рис.3).
Теорема 4 (Больцано–Коши). Если функция f (x) непрерывна на отрезке [ a, b ], то она принимает на (a, b) все промежуточные значения между f (a) и f (b). Существование непрерывной обратной функции Пусть функ. y = f (x) определена, строго монотонна и непрерывна на отрезке [ a, b ]. Тогда на отрезке [ α, β ] (α = f (a), β = f (b)) существует обратная функция x = g (y), также строго монотонная и непрерывная на отрезке (α, β).
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 382; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.190.244 (0.008 с.) |