Регулирование напряжения изменением коэффициента трансформаций трансформаторов и автотрансформаторов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Регулирование напряжения изменением коэффициента трансформаций трансформаторов и автотрансформаторов

Поиск

Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии. Большинство силовых трансформаторов оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков. Настройка может производиться с помощью (анцапфы) переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе. Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора. Принципы регулирования. При эксплуатации трансформаторов довольно часто возникает необходимость регулирования вторичного напряжения. При этом различают два основных случая:

1) стабилизация вторичного напряжения при незначитель­ном (на 5 — 10%) изменении первичного напряжения, что про­исходит обычно из-за падения напряжения в линии;

2) регулирование вторичного напряжения (из-за особенностей технологического процесса) в широких пределах при неизменном (или мало изменяющемся) первичном напряжении.

В обоих случаях вторичное напряжение регулируется путемизменения коэффициента трансформации, т. е. соотношения между числами витков первичной и вторичной обмоток.

В первом случае при небольших изменениях первичного напряжения можно изменять число витков либо первичной, либо вторичной обмотки. Например, при снижении первичного напряжения соответственно уменьшают число витков первичной обмотки так, чтобы ЭДС витка осталась неизменной. Поскольку число витков вторичной обмотки не изменяется, неизменной останется и ЭДС вторичной обмотки. При возрастании первичного напряжения соответственно увеличивают число витков первичной обмотки.

Во втором случае, когда требуется регулировать вторичное напряжение при неизменном первичном, изменяют число витков вторичной обмотки. Изменять число витков первичной обмотки в этом случае нельзя, так как это приведет к изменению магнит­ного потока трансформатора и, как следствие, к его перегреву или плохому использованию. Кроме того, очевидно, что получить малое выходное напряжение U2 = U1w2/w1 при неизменном числе витков вторичной обмотки практически невозможно, так какпри этом необходимо иметь большое число регулировочных витков*.

Переключение ответвлений обмоток w1 и w2 может осуществляться при отключении трансформатора от первичной и вторичной сетей (переключение без возбуждения) или под нагрузкой (регулирование под нагрузкой). Существуют также трансформаторы с плавным регулированием напряжения, в которых плавно изменяют число витков w2 или магнитный поток Ф2, охватываемый этой обмоткой.

 

* При очень больших мощностях иногда применяют регулирование по высоковольтной первичной стороне (чтобы избежать применения регулирующей аппаратуры на большие токи), используя специальные автотрансформаторные схемы.

 

Переключение ответвлений без возбуждения. Регулирование напряжения этим способом применяют в масляных и сухих силовых трансформаторах общепромышленного назначения, а также в трансформаторах, предназначенных для вентильных преобразователей. Напряжение регулируют на ±5% от Uном ступенями по 2,5 %, т. е. трансформатор имеет пять ступеней регулирования напряжения. В трансформаторах сравнительно небольшой мощности используют три ступени регулирования напряжения (+ 5; 0; —5%). В силовых трансформаторах большой мощности обычно напряжение регулируют на стороне ВН. Это позволяет упростить конструкцию переключателя ответвлений, так как токи в обмотке ВН меньше, чем в обмоткеНН. Кроме того, число витков обмотки ВН больше, чем обмотки НН, вследствие чего изменение числа витков на 1,25 — 2,5 % можно осуществлять с большей точностью. В трансформаторах, предназначенных для вентильных преобразователей, часто напряжение регулируют на стороне НН; при этом переключающую аппаратуру выполняют на большие токи, что сильно усложняет ее конструкцию.

При регулировании напряжения отключают часть витков только одной (первичной или вторичной) обмотки, что нарушает равномерность распределения МДС по высоте обмотки. Это приводит к искажению магнитного поля рассеяния и возникновению поперечной составляющей потока рассеяния, которая, взаимодействуя с током обмоток, создает электромагнитные силы, действующие на обмотку в осевом направлении (см. § 2.19). При аварийных режимах (короткое замыкание) эти силы могут достигать больших значений и вызывать разрушение обмотки. Поэтому стремятся равномерно распределить отключаемые витки обмотки по высоте или расположить их по возможности в середине высоты обмотки симметрично относительно обоих ярм. В трехфазных трансформаторах сравнительно небольшой мощности, где электромагнитные силы при коротких замыканиях невелики, для упрощения конструкции переключателя ответвлений целесообразно выполнять ответвления вблизи заземленной нулевой точки обмотки, так как при этом уменьшается напряжение, на которое должна быть рассчитана изоляция переключателя. Если ответвления располагать в средней части обмотки (в мощных трансформаторах), то переключающую аппаратуру необходимо выполнять с усиленной изоляцией и с высокой степенью точности, так как несогласованность работы ее элементов при высоком напряжении может привести к серьезным авариям.

Способы регулирования напряжения

Различают два способа регулирования напряжения: местное и централизованное.

Под местным регулированием понимают регулирование напряжения непосредственно на месте потребления, т. е. его стабилизацию на заданном уровне у каждого отдельного потребителя (например, стабилизаторы для телевизоров) или сразу для группы потребителей (например, для одного или нескольких домов). В последнем случае в какой-то точке сети устанавливают трансформатор с устройством для регулирования напряжения. Это устройство включают, когда у всех потребителей, питаемых от этого трансформатора, надо поддержать напряжение на определенном уровне (например, 220 В).

Регулирование напряжения может быть автоматическим, без отключения трансформатора от сети. При этом потребитель даже не чувствует, что в трансформаторе происходят какие-то изменения. Такое регулирование напряжения называют регулированием под нагрузкой (РПН). Однако РПН требует применения сложных и дорогих переключающих устройств. Поэтому для трансформаторов небольшой мощности часто применяют регулирование напряжения без возбуждения, т. е. после отключения всех их обмоток от сети. Этот способ регулирования сокращенно называют ПБВ (переключение без возбуждения). После переключения трансформатор вновь включается в работу. При этом способе потребителя на какое-то время вообще отключают от сети. Особенно неудобно это там, где нагрузка меняется часто. Зато устройства ПБВ просты по конструкции и относительно дешевы.

Под централизованным регулированием понимают регулирование напряжения непосредственно на шинах генераторов электростанций при помощи изменения их возбуждения. Централизованное регулирование осуществляют обычно как «встречное», т. е. таким образом, чтобы оно заранее «встречало» колебания напряжения, вызванные нагрузкой. Так, в период наибольших нагрузок у генераторов поднимают напряжение выше номинального, чтобы компенсировать повышенные потери напряжения в сети и поддержать его у потребителя близким к поминальному. И наоборот, когда нагрузка снижается, уменьшают возбуждение у генераторов и соответственно напряжение в сети.

 

5. Общие требования к схемам электрических сетей и надежности электроснабжения.

Электри́ческая схе́ма — это документ, составленный в виде условных изображений или обозначений составных частей изделия, действующих при помощиэлектрической энергии, и их взаимосвязей. Электрические схемы являются разновидностью схем изделия и обозначаются в шифре основной надписи буквой Э.

Правила выполнения всех типов электрических схем установлены ГОСТ 2.702-75 (не действителен, заменён на 2.702-2011), при выполнении схем цифровой вычислительной техники руководствуются ГОСТ 2.708-81.

Принципиальные электрические схемы определяют полный состав приборов, аппаратов и устройств (а также связей между ними), действие которых обеспечивает решение задач управления, регулирования, защиты, измерения и сигнализации. Принципиальные схемы служат основанием для разработки других документов проекта: монтажных таблиц щитов и пультов, схем внешних соединений и др.

Эти схемы дают детальное представление о работе системы и служат также для изучения принципа действия системы, они необходимы при производстве наладочных работ и в эксплуатации.

При разработке систем автоматизации технологических процессов принципиальные электрические схемы обычно выполняют применительно к отдельным самостоятельным элементам, установкам или участкам автоматизируемой системы, например выполняют схему управления задвижкой, схему автоматического и дистанционного управления насосом, схему сигнализации уровня в резервуаре и т.п. Используя эти схемы, составляют в случае необходимости принципиальные электрические схемы, охватывающие целый комплекс отдельных элементов, установок или агрегатов, которые дают полное представление в связях между всеми элементами управления, блокировки, защиты и сигнализации этих установок или агрегатов. Примером таких схем может служить принципиальная электрическая схема управления насосной установкой, состоящей из насоса, вакуум-насоса и нескольких электрифицированных задвижек.

При всем многообразии принципиальных электрических схем в различных системах автоматизации любая схема, независимо от степени ее сложности, представляет собой определенным образом составленное сочетание отдельных, достаточно элементарных электрических цепей и типовых функциональных узлов, в заданной последовательности выполняющих ряд стандартных операций: передачу командных сигналов от органов управления или измерения к исполнительным органам, усиление или размножение командных сигналов, их сравнение, превращение кратковременных сигналов в длительные и, наоборот, блокировку сигналов и т.п. К элементарным цепям могут быть отнесены типовые схемы включения измерительных приборов различного назначения.

Разработка принципиальных электрических схем всегда содержит определенные элементы творчества и требует умелого применения элементарных электрических цепей и типовых функциональных узлов, оптимальной компоновки их в единую схему с учетом удовлетворения предъявляемых к схемам требований, а также возможного упрощения и минимизации схем. В практике проектирования принципиальных электрических схем на базе опыта проектирования монтажа, наладки и эксплуатации различного рода систем автоматизации сложились некоторые общие принципы построения электрических схем. Вопрос о методах разработки принципиальных электрических схем в процессе проектирования систем автоматизации технологических процессов следует рассматривать в общем комплексе вопросов, связанных с контролем, управлением и регулированием данного объекта. Во всех случаях помимо полного удовлетворения требований, предъявляемых к системе управления, каждая схема должна обеспечивать высокую надежность, простоту и экономичность, четкость действий при аварийных режимах, удобство оперативной работы, эксплуатации, четкость оформления.

 

Надежность. Под надежностью схемы понимают ее способность безотказно выполнять свои функции в течение определенного интервала времени в заданных режимах работы. Это требование обычно обеспечивается целым рядом технических мероприятий, таких как применение наиболее надежных элементов, приборов и аппаратов; оптимальные режимы их работы; резервирование малонадежных или наиболее ответственных элементов или цепей схемы; автоматический контроль за неисправностью схемы; запретные блокировки, исключающие возможность проведения ложных операций; сокращение времени нахождения элементов схемы под напряжением и т.д.

Надежность действия является главным требованием, которое предъявляется к схемам. Если при проектировании обеспечению надежности действия схемы не будет уделено должного внимания, то все другие преимущества, которые имеет схема, могут быть утрачены. Требования к уровню надежности схем регулирования, управления и сигнализации определяются оценкой последствий отказов их действия для конкретных участков технологического процесса. Иногда эти отказы могут явиться причинами возникновения или развития тяжелых аварий.

Методы оценки надежности и способы ее повышения применительно к электрическим схемам подробно освещены в технической литературе.

Билет

Последствия к.з.

коро́ткое замыка́ние (КЗ) — электрическое соединение двух точек электрической цепи с различными значениямипотенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания. Последствиями коротких замыканий являются резкое увеличение тока в короткозамкнутой цепи и снижение напряжения в отдельных точках системы. О последствиях короткого замыкания всегда нужно помнить и не допускать эксплуатации источника без плавких предохранителей в его электрической цепи. Для профилактики следует чаще проверять состояние изоляции всех токоведу-щих частей. Для предупреждения последствий короткого замыкания применяется быстродействующая релейная защита, выключатели, плавкие и автоматические предохранители. Автоматическая защи - - та электродвигателей от многофазных замыканий и токов перегрузки обеспечивается с помощью автоматов серии А с встроенным максимальным током расцепителем мгновенного действия. Для уменьшения последствий коротких замыканий необходимо как можно быстрее отключить поврежденный участок, что достигается применением быстродействующих выключателей и релейной защиты с минимальной выдержкой времени. Немаловажную роль играют автоматическое регулирование и форсировка возбуждения генераторов, позволяющие поддерживать напряжение в аварийном режиме на необходимом уровне. Все электрические аппараты и токоведущие части электрических станций должны быть выбраны таким образом, чтобы исключалось их разрушение при прохождении по ним наибольших возможных токов к. Для устранения последствия короткого замыкания между витками индукторов необходимо предусматривать устройство максимальной токовой защиты, автоматически отключающее печи. Для предупреждения последствий короткого замыкания применяется быстродействующая релейная защита, выключатели, плавкие и автоматические предохранители. Автоматическая защита электродвигателей от многофазных замыканий и токов перегрузки обеспечивается с помощью автоматов серии А с встроен-ным максимальным током расцепителем мгновенного действия. Таким образом, последствия короткого замыкания в какой-либо точке системы могут при определенных условиях распространиться на всю систему и вызвать повреждение в той или другой ее части. Для того чтобы повреждение, вызвавшее короткое замыкание, не получило распространения в системе, необходимо быстро отключить поврежденный элемент. В ряде случаев, исходя из условий устойчивости параллельной работы, требуется отключить короткое замыкание за 0 1 - 0 3 сек. Отключение за такое ремя осуществляется с помощью релейной защиты. Учитывая, что последствия короткого замыкания, вызванного перекрытием воздушного промежутка, значительно менее опасны, чем разрушение опоры или повреждение проводов, в настоящее время рассматривается вопрос о возможности принятия в расчетах по выбору изоляционных расстояний пониженных нормативных величин с учетом их повторяемости не 1 раз в 10 - 15 лет, а 1 раз в 5 лет. Каковы причины и последствия короткого замыкания. Наиболее действительной мерой борьбы с такими последствиями коротких замыканий является поддержание падающего напряжения системы путем кратковременной, но весьма энергичной форсировки возбуждения всех синхронных машин, работающих в системе. Предохранители с первичной стороны трансформатора служат для защиты сети от последствий короткого замыкания при повреждении в самом трансформаторе или на участке между предохранителями и трансформатором. Эти предохранители не защищают трансформатор напряжения от перегрузок, так как номинальный ток их плавких вставок, сечение которых берется минимально возможным по условиям механической прочности

Причины короткого замыкания:

Могут быть вызваны перегрузкой, разными неполадками, например: неисправность в выключателе или штепсельной розетке, непрочное соединение в осветительной коробке, механическое повреждение изоляции кабеля, неисправность бытовых приборов без системной защиты заземлением или занулением. Неисправности и повреждения могут образоваться как из-за неосторожного обращения, так и при физическом износе элементов системы. Например если у выключателя сломалась пружинящая контактная пластина или образовалась трещина на крышке, его необходимо заменить Причины короткого замыкания известны любому человеку, связанному с электрикой. Однако для простого обывателя они могут не вызвать никаких опасений. Но следует помнить, что основную опасность в виде короткого замыкания электрической цепи может вызвать не только удар молнии. Причинами могут послужить повышение напряжения в сети, не предназначенной для такого уровня, нарушение изоляцииэлектропроводки, ее изношенность, неисправность осветительных или других электрических приборов, в том числе и бытовых. Одной из причин замыкания могут стать неквалифицированные действия обслуживающего электросети персонала или неумелое обращение с электроприборами дилетантов. Последствия короткого замыкания могут быть непредсказуемыми. Самым легким из них будет перегорание лампочки или электроприбора. Самым сложным, пожалуй, будет возникновение пожара и возможные человеческие жертвы.
Специалистами в этой области разработаны ряд мероприятий и методов защиты электрических приборов и сетей от короткого замыкания. Одним из защитных способов являются молниезащита зданий и сооружений, заземление крупного электрического оборудования, установка предохранителей в электроустройствах, применение сетевых фильтров. При возникновении нештатной, чрезвычайной ситуации с электропроводкой или электрическими приборами необходимо знать несколько несложных, но вполне способных предотвратить тяжелые последствия короткого замыкания, действий. В первую очередь нужно вызвать аварийную службу, обесточить пораженный участок электросети, отключить электроприборы, не трогать оголенные провода незащищенными руками. При возникновении очага пожара, необходимо локализовать его, накрыв огонь плотным одеялом. Если отключить электроэнергию не удается, ни в коем случае не заливать огонь водой в случае искрения электропроводки. Нужно всегда помнить, что негативные последствия от короткого замыкания легче предотвратить, чем преодолевать их впоследствии. Своевременное профилактическое обследование электропроводки, удаление нарушений ее целостности, замена изношенных деталей электрических приборов поможет пользоваться достижением человечества с достаточной долей безопасности



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 2133; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.157.241 (0.009 с.)