Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Регулирование напряжения изменением потоков реактивной мощности сетиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Сущность регулирования напряжения за счет воздействия на потоки реактивной мощности по элементам электрической сети заключается в том, что при изменении реактивной мощности изменяются потери напряжения в реактивных Сопротивлениях. Так, для схемы сети, приведенной на рис. 1, связь между напряжениями начала U1, и конца U2 можно записать в виде: (1)
Рис. 1 Схема сети с компенсирующим устройством В отличие от активной мощности, реактивную мощность в узлах сети можно изменять путем установки в них устройств поперечной компенсации, т. е. компенсирующих устройств (КУ), подключенных параллельно нагрузке. В качестве таких компенсирующих реактивную мощность устройств могут служить батареи конденсаторов, синхронные компенсаторы, шунтирующие и управляемые реакторы, статические тиристорные компенсаторы. К таким устройствам могут быть также отнесены генераторы местных электростанций, подключенных к системе передачи и распределения электроэнергии, синхронные электродвигатели, фильтры высших гармоник. Часть из указанных компенсирующих устройств может только выдавать в сеть реактивную мощность, некоторые - только потреблять из сети реактивную мощность (шунтирующие и управляемые реакторы). Наиболее ценными для регулирования напряжения являются устройства, обладающие способностями в зависимости от режима сети как генерировать, так и поглощать реактивную мощность (синхронные компенсаторы, статические тиристорные компенсаторы). Компенсирующие устройства могут быть нерегулируемыми и регулируемыми. При включении нерегулируемого компенсирующего устройства в сети создается постоянная добавка потери напряжения (отрицательная или положительная). Если же компенсирующее устройство позволяет изменить свою мощность в зависимости от режима сети, то добавка потери напряжения, как это следует из формулы (1), оказывается переменной, в результате чего появляется возможность регулировать напряжение. Так, в схеме сети, приведенной на рис. 1, при изменении компенсирующим устройством мощности QK от выдачи (знак «минус» в формуле (1) перед QK) до потребления (знак «плюс» перед QK) будет изменяться потеря напряжения, что при неизменном напряжении U1 = const приведет также к изменению напряжения U2 в конце сети, т. е. будет обеспечено регулирование напряжения. Как следует из формулы (1), эффективность регулирования напряжения с помощью поперечных компенсирующих устройств повышается в сетях с относительно большими" реактивными сопротивлениями по сравнению с активными, например, в воздушных сетях по сравнению с кабельными. При этом наибольший эффект достигается при установке компенсирующих устройств в наиболее удаленных от центров литания узлах нагрузки. С помощью поперечного компенсирующего устройства можно создать режим, в котором напряжение в конце сети окажется больше напряжения в начале (U2 > U1). Это произойдет тогда, когда потеря напряжения в формуле (1) станет отрицательной: Отсюда мощность компенсирующего устройства для такого режима (2) Физическую сущность регулирования напряжения с помощью поперечных компенсирующих устройств дополнительно поясним на векторных диаграммах. Для этого связь между напряжением U1 и U2 запишем через падение напряжения: (3) При установке компенсирующего устройства, выдающего реактивную мощность, (4) Для случая, когда генерируемая мощность компенсирующего устройства полностью компенсирует реактивную нагрузку потребителей (QK = Q2) (5) На рис. 2, а показана векторная диаграмма напряжений без компенсирующего устройства и с компенсирующим устройством при QK < Q2, построенная по формулам (3) и (4). Здесь ∆Ua-падения напряжения от передачи активной мощности, a ∆Up- реактивной мощности без компенсирующего устройства. Из диаграммы видно, что при установке компенсирующего устройства значение ∆Ua не изменяется, а вектор∆Up занимает положение ∆Up.k. В результате исходный вектор напряжения ∆U1 в начале линии уменьшается по модулю и становится равным∆U1k. Таким образом, для получения заданного напряжения U2 за счет установки компенсирующего устройства потребуется меньшее напряжение ∆U1 в результате снижения падения напряжения.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 434; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.25.125 (0.008 с.) |