Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Коррозионностойкие литейные алюминиевые сплавы систем al – mg (ал8, ал27) и al – mg – zn (ал24) хорошо льются и свариваются. Легирование be, ti, zn вызывает изменение зерна. Они термообрабатываются.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Спеченный алюминиевый порошок (САП) получается прессованием (700 МПа) при температуре 500 – 600°С алюминиевой пудры. САП характеризуется высокой прочностью и жаропрочностью до 500°С. Спеченные алюминиевые сплавы систем Al-Si-Ni (СОС 1), Al-Si-Fe Композиционные алюминиевые сплавы армируются борными волокнами (АД1, АД33, ВКА – 1, ВКА – 2), стальной проволокой (КАС-1, КАС-1А) прочны, гнутся, обладают большой ударной вязкостью, жаропрочностью, усталостью, прочностью. Медь и ее сплавы. Диаграмма состояния Cu-Zn. Латуни: состав, структура, маркировка, свойства и применение. Бронзы, мельхиоры, нейзильберы и др. сплавы на основе меди, их химический состав, маркировка, применение.
Медь Cu — метал красновато-розового цвета, обладает высокой тепло- и электропроводностью, пластичностью и тягучестью. Плотность ее 8,94; температура плавления 1083°С; твердость по Моосу 2,5—3. Из-за своей мягкости медь плохо обрабатывается режущим инструментом, однако хорошо полируется. Находясь в сухом месте, медь покрывается тончайшей пленкой оксида меди, которая служит хорошей защитой от дальнейшего окисления. Во влажной среде покрывается зеленоватым напетом закиси меди, который тоже сохраняет ее о* разрушения. Медь легко растворяется в азотной кислоте и в концентрированной серной кислоте при нагревании. В соляной кислоте растворяется только в присутствии кислорода. Медь, обладая прекрасными физическими характеристиками, широко применяется почти во всех отрасли» промышленности. В художественной промышленности медь употребляют для чеканных и филигранных работ, для изделий под эмаль и других поделок, в ювелирном производстве — для легирования сплавов благородных металлов. Медь служит также основой для производства сплавов — латуней, бронзы, мельхиора, нейзильбера. спортивных значков, декоративной посуды и дешевой ювелирной галантереи. Плотность бронзы 7,5—8,8; температура плавления 1010—1140°С; твердость по Моосу 4—4,5. Оловянистые бронзы отличаются хорошими литейными свойствами. Это было замечено людьми еще в глубокой древности. И в наши дни бронза считается прекрасным материалом для художественного литья. В художественной промышленности используется бериллиевая бронза. Она отличается высокой твердостью и упругостью, наиболее устойчива к коррозии. Применяется для изготовления юбилейных значков и. сувениров. Производство чугуна. Основные физико-химические процессы получения чугуна в доменной печи. Чугун выплавляется в домнах. Это сложное инженерное сооружение, работающее непрерывно в течение 5..10 лет. Печь работает по принципу противотока. Сверху загружается руда,флюсы и кокс, а снизу подается воздух. Кокс служит для нагревания и расплавления руды, а также участвует в восстановлении железа из окислов руды. В коксе должно быть минимум серы и фосфора. Флюсы (известняки, кремнеземы,..) необходимы для получения шлаков При сгорании топлива образуется окись углерода, которая и является главным восстановителем железа. Конвертерный и мартеновский способы производства стали и их сравнительная характеристика. Производство стали в электропечах. Конвертерное производство — получение стали в сталеплавильных агрегатах- конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплав Мартеновское производство производство в мартеновских печах (См. Мартеновская печь) металлургических илимашиностроительных заводов литой стали заданного химического состава. Сталь получается путёмокислительной плавки загруженных в печь железосодержащих материалов — чугуна, стального лома,железной руды и флюсов в результате сложных физико-химических процессов взаимодействия междуметаллом, шлаком и газовой средой печи. М. п. наряду с другими видами производства стали (см. Кислородно-конвертерный процесс, Электросталеплавильное производство) —второе звено в общемпроизводственном цикле чёрной металлургии (См. Чёрная металлургия); два других основных звена —выплавка чугуна в доменных печах и прокатка стальных слитков или заготовок. Благодаря преимуществам, которыми мартеновский процесс отличался от других способов массовогополучения стали (большая гибкость и возможность применять его при любых масштабах производства;менее строгие требования к исходным материалам; относительная простота контроля и управления ходомплавки; высокое качество и широкий ассортимент выплавляемой стали; сравнительно небольшая стоимостьпередела), в конце 19 века и 1-й половины 20 века он был основным сталеплавильным процессом (в 1940—55 этим способом изготовлялось около 80 % производимой в мире стали). Однако в связи с бурнымразвитием в 60-х годах 20 века кислородно-конвертерного производства строительство мартеновских цеховпрактически прекратилось; относительная доля мартеновской стали непрерывно уменьшается. В 1970 вмартеновских печах выплавлено в мире Мартеновское производство240 млн. т стали (Мартеновскоепроизводство40 %), в СССР — 84 млн. т (Мартеновское производство72 %). М. п. — основной потребительстального лома (около 50 % Наиболее совершенным способом производства стали является выплавка ее в электроплавильных печах. Основные преимущества этих печей заключаются в следующем: 1. В плавильном пространстве температура достигает 2000°, что способствует удалению вредных примесей: кислорода, серы и фосфора, а также неметаллических включений (сталь, полученная таким способом, по химическому составу лучше мартеновской). 2. Можно выплавлять любые сорта стали с содержанием заданного количества различных элементов и таких, как хром, никель и даже молибден, ванадий, вольфрам, титан и др. 3. Обеспечивается точность и простота регулирования температур. 4. Значительно уменьшается угар металла и легкая окисляемость легирующих элементов. Выплавку стали производят в дуговых и индукционных электрических печах, а также роторных. Наибольшее распространение имеют дуговые электрические печи
Производство меди. Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический. Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличии от пирометаллургического не позволяет извлечь попутно с медью драгоценные металлы. Второй способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению. Основу этого процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений. Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди. Черновую медь далее подвергают рафинированию – очистке от примесей
Производство алюминия. Алюминий — это легкий и пластичный белый металл, матово-серебристый благодаря тонкой оксидной пленке, которая сразу же покрывает его на воздухе. Он относится к III группе периодической системы, обозначается символом Al, имеет атомный номер 13 и атомную массу 26,98154. Алюминий обладает замечательными свойствами, которые объясняют широкий спектр его применения. По объемам использования в самых разных отраслях промышленности он уступает только железу. Ковкий и пластичный, алюминий легко принимает любые формы. Оксидная пленка делает его устойчивым к коррозии, а значит, срок службы изделий из алюминия может быть очень долгим. Кроме того, к списку достоинств необходимо добавить высокую электропроводимость, нетоксичность и легкость в переработке. Всем этим объясняется огромное значение алюминия в мировой экономике. Алюминий необходим для производства автомобилей, вагонов скоростных поездов, морских судов. Без него аэрокосмическая индустрия никогда не получила бы развития. Самые разные виды продуктов из алюминия используются в современном строительстве. Алюминий практически вытеснил медь в качестве материала для высоковольтных линий электропередачи. Примерно половина посуды для приготовления пищи, продаваемой каждый год во всем мире, сделана именно из этого металла. Как получают алюминий? Алюминий чрезвычайно распространен в природе: по этому параметру он занимает четвертое место среди всех элементов и первое — среди металлов (8,8% от массы земной коры), но не встречается в чистом виде. Чаще всего алюминий производят из бокситов. Более 90% мировых запасов этого минерала сосредоточено в странах тропического и субтропического пояса: Австралии, Гвинее, Ямайке, Суринаме, Бразилии, Индии. В нашей стране также используются нефелиновые руды, месторождения которых расположены на Кольском полуострове и в Кемеровской области. При переработке нефелинов получают значительные объемы попутной продукции — кальцинированную соду, поташ, удобрения и цемент. Сначала из добытой и обогащенной руды извлекают так называемый глинозем — оксид алюминия (Al2O3). Несмотря на название, по виду он не имеет ничего общего с глиной или черноземом — скорее, он похож на муку или очень белый песок. Затем глинозем методом электролиза превращают в алюминий. Из двух тонн глинозема выходит одна тонна алюминия. Производство алюминия является исключительно энергоемким. Поэтому алюминиевые заводы наиболее выгодно строить в регионах, где есть свободной доступ к источникам электроэнергии.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 413; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.27.122 (0.009 с.) |