ТОП 10:

Дедукция. Сущность и структура простого категорического силлогизма.



Цель силлогизма состоит в получении из посылок нового суждения, или вывода. Пример силлогизма. Все жидкости упруги. Вода – жидкость. Вода упруга.

Как видно из примера, средний термин входит в каждую из посылок, но не входит в заключение силлогизма. Это происходит потому, что цель силлогизма состоит в выяснении отношения между двумя понятиями.

Силлогизмы могут иметь различные посылки, и потому выводы в них могут стоять в зависимости от различных правил. Логика устанавливает все эти правила и изучает все разновидности силлогизмов.

Первая группа силлогизмов – простые категорические силлогизмы. К ним относятся заключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.

Рассматривая простые категорические силлогизмы, можно заметить, что расположения понятий, или терминов, в посылках данных силлогизмов могут быть различными.

В каждом силлогизме должно быть три термина: меньший, больший и средний.

Меньшим термином является субъект заключения. Большим термином именуется предикат заключения. Термин, который присутствует в посылках, но отсутствует в заключениях, называется средним.

Категорические силлогизмы в мышлении встречаются весьма часто. Для того чтобы получить истинное заключение, необходимо брать истинные посылки и соблюдать правила категорического силлогизма.

Выделяют следующие правила категорического силлогизма:

1) в каждом силлогизме должно быть только три термина;

2) средний термин должен быть распределен по крайней мере в одной из посылок;

3) термин распределен в заключении, если он распределен в посылке;

4) из двух отрицательных посылок нельзя сделать никакого заключения;

5) если одна из посылок отрицательна, то и заключение должно быть отрицательным;

6) из двух частных посылок нельзя сделать заключение;

7) если одна из посылок частная, то заключение должно быть частным;

8) если большая посылка – частная, а меньшая – отрицательная, то вывод невозможен.

Данные правила не должны нарушаться ни в одном силлогизме. Всякое нарушение их уничтожает возможность вывода, ведет к ошибочному выводу.

В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Например: «Щедрость заслуживает похвалы, как и всякая добродетель».

Правила посылок и терминов простого категорического силлогизма.

Категорические силлогизмы в мышлении встречаются весьма часто. Для того чтобы получить истинное заключение, необходимо брать истинные посылки и соблюдать правила категорического силлогизма.

Выделяют следующие правила категорического силлогизма:

1) в каждом силлогизме должно быть только три термина;

2) средний термин должен быть распределен по крайней мере в одной из посылок;

3) термин распределен в заключении, если он распределен в посылке;

4) из двух отрицательных посылок нельзя сделать никакого заключения;

5) если одна из посылок отрицательна, то и заключение должно быть отрицательным;

6) из двух частных посылок нельзя сделать заключение;

7) если одна из посылок частная, то заключение должно быть частным;

8) если большая посылка – частная, а меньшая – отрицательная, то вывод невозможен.

Данные правила не должны нарушаться ни в одном силлогизме. Всякое нарушение их уничтожает возможность вывода, ведет к ошибочному выводу.

В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Например: «Щедрость заслуживает похвалы, как и всякая добродетель».

Фигуры и модусы ПКС. Правила фигур.

В каждом силлогизме должно быть три термина: меньший, больший, средний.

Меньшим является термин, называющий субъект заключения. Предикат заключения является большим термином. Термин, который присутствует в посылках, но отсутствует в заключении, является средним термином. Посылка, в которую входит больший термин, является большей посылкой, а посылка, в которую входит меньший термин, – меньшей посылкой. Большая посылка записывается первой, меньшая – второй.

В зависимости от положения среднего термина в посылках различают четыре фигуры силлогизма:

1) в первой фигуре большая посылка должна быть общей, меньшая – утвердительной;

2) во второй фигуре: большая посылка – общая, одна из посылок и заключение – отрицательные;

3) в третьей фигуре – меньшая посылка должна быть утвердительной, а заключение – частное;

4) четвертая фигура общеупотребительных заключений не дает.

Модусами силлогизма называются разновидности фигур, отличающихся характером посылок и заключения.

Силлогизмы, как и все умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.

Наиболее распространенные ошибки при умозаключении по категорическому силлогизму такие:

1) заключение делается по первой фигуре с меньшей отрицательной посылкой. Все классные комнаты нуждаются в проветривании. Эта комната – не классная. Эта комната не нуждается в проветривании;

2) заключение делается по второй фигуре с двумя утвердительными посылками.

Все зебры полосатые.

Это животное полосатое.

Это животное – зебра.

17.Сложное дедуктивное умозаключение: виды и общая характеристика.

Сложным силлогизмом (полисиллогизмом) являются два или несколько простых категорических силлогизмов, связанных друг с другом таким образом, что заключение одного из них становится посылкой другого. Различают прогрессивные и регрессивные полисиллогизмы.

В прогрессивном силлогизме заключение предшествующего силлогизма становится большей посылкой последующего силлогизма.

Регрессивный силлогизм – это такой сложный силлогизм, в котором заключение предшествующего силлогизма становится меньшей посылкой последующего силлогизма.

Прогрессивный и регрессивный полисиллогизмы в мышлении чаще всего применяются в сокращенной форме – в виде соритов.

Выделяют такой вид силлогизма, в котором обе посылки представляют собой сокращенные простые категорические силлогизмы. Данный вид силлогизма называется эпихейремой.

Индукция: сущность и виды.

Индукция – это умозаключение от знания меньшей степени общности к новому знанию большей степени общности.

Посылками индуктивного умозаключения являются суждения, в которых закрепляется информация, полученная опытным путем, об устойчивости признака у ряда явлений, принадлежащих одному и тому же классу.

Основной функцией индукции является генерализация, т. е. получение общих суждений. Данные обобщения могут носить различный характер – от простейших до эмпирических.

Общее, существенное, повторяющееся и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют два вида индуктивных умозаключений: полную и неполную индукцию.

Полная индукция – это умозаключение, в котором общее заключение о всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса.

Данные индуктивные умозаключения применяются в тех случаях, когда имеется дело с замкнутыми классами, в которых число элементов конечно и которые легко обозримы (например, число планет Солнечной системы).

Заключение по полной индукции может быть сделано не только из единичных, но и из общих суждений. Она дает достоверное заключение, поэтому ее часто применяют в математике и в других строгих доказательствах.

Неполная индукция – это умозаключение, в котором при повторяемости признаков у явлений опреде-. ленного класса делают вывод о принадлежности этого признака всему классу явлений.

Неполная индукция применяется в тех случаях, когда нельзя рассмотреть все интересующие элементы явлений; если число объектов либо бесконечно, либо конечно, но достаточно велико; рассмотрение уничтожает объект. При данном виде индукции исследуются не все, а некоторые элементы класса, и если у каждого из них обнаруживается повторяющийся признак, то делают вывод о его принадлежности всему классу явлений.

Одним из видов неполной индукции является научная индукция. Научной индукцией называется такое умозаключение, в котором на основании познания необходимых признаков или необходимой связи части предметов класса делается общее заключение обо всех предметах этого класса. Научная индукция так же, как полная и математическая, дает достоверное заключение.

Научная индукция опирается не столько на большое число исследованных фактов, сколько на всесторонность их анализа и установление причинной зависимости, выделение необходимых признаков или необходимых связей, предметов и явлений. Поэтому она и дает научное заключение.

Научная индукция в посылках опирается только на существенные связи и отношения, благодаря чему достоверность ее заключений носит необходимый характер.

Другим видом неполной индукции является популярная индукция. На основании повторяемости одного и того же признака у ряда однородных предметов и отсутствия противоречащего случая делается общее заключение, что все предметы этого рода обладают этим признаком. Такая индукция дает заключение вероятное, а не достоверное.

Методы научной индукции.

Научной индукцией называется такое умозаключение, в котором на основании познания необходимых признаков или необходимой связи части предметов класса делается общее заключение обо всех предметах этого класса. Научная индукция так же, как полная и математическая, дает достоверное заключение.

Научная индукция опирается не столько на большое число исследованных фактов, сколько на всесторонность их анализа и установление причинной зависимости, выделение необходимых признаков или необходимых связей, предметов и явлений. Поэтому она и дает научное заключение.

Научная индукция в посылках опирается только на существенные связи и отношения, благодаря чему достоверность ее заключений носит необходимый характер.







Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 100.26.182.28 (0.009 с.)