![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Разделительные умозаключения.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Разделительно-категорическое умозаключение. Разделительно-категорическим называется умозаключение, в котором одна из посылок — разделительное, а другая посылка и заключение — категорические суждения. Простые суждения, из которых состоит разделительное (дизъюнктивное) суждение, называются членами дизъюнкции, или дизъюнктами. 1. В утверждающе-отрицающем модусе меньшая посылка — категорическое суждение — утверждает один член дизъюнкции, заключение — также категорическое суждение — отрицает другой ее член. Заключение по этому модусу всегда достоверно, если соблюдается правило: большая посылка должна быть исключающе-раздели-тельным суждением, или суждением строгой дизъюнкции. Если это правило не соблюдается, достоверного заключения получить нельзя. 2. В отрицающе-утверждающем модусе меньшая посылка отрицает один дизъюнкт, заключение утверждает другой.Заключение по этому модусу всегда достоверно, если соблюдается правило: в большей посылке должны быть перечислены все возможные суждения -— дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказыванием. Применяя неполное (открытое) дизъюнктивное высказывание, достоверного заключения получить нельзя. Однако это заключение может оказаться ложным, так как в большей посылке учтены не все возможные виды сделок: посылка представляет собой неполное, или открытое, дизъюнктивное высказывание. Заключение будет истинным, если в условной посылке учтены все возможные случаи. Разделительно-категорическое умозаключение находит широкое применение в судебно-следственной практике, особенно при построении и проверке следственных версий.
42) Условно-разделительное умозаключение Умозаключение, в котором одна посылка условное, а другая — разделительное суждения, называется условно-разделительным, или лемматическим. Разделительное суждение может содержать две, три и большее число альтернатив, поэтому лемматические умозаключения делятся на дилеммы (две альтернативы), трилеммы (три альтернативы) и т.д. Различают два вида дилемм: конструктивную (созидательную) и деструктивную (разрушительную), каждая из которых делится на простую и сложную. В простой конструктивной дилемме условная посылка содержит два основания, из которых вытекает одно и то же следствие. Разделительная посылка утверждает оба возможных основания, заключение утверждает следствие. Рассуждение направлено от утверждения истинности оснований к утверждению истинности следствия.
Схема простой конструктивной дилеммы: (р-»г)^(q->г),рvq В сложной конструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка утверждает оба возможных следствия. Рассуждение направлено от утверждения истинности оснований к утверждению истинности следствий. Схема сложной конструктивной дилеммы: (p->q)^(r-»s), pvr qvs В простой деструктивной дилемме условная посылка содержит одно основание, из которого вытекает два возможных следствия. Разделительная посылка отрицает оба следствия, заключение отрицает основание. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности основания. Схема простой деструктивной дилеммы: (p->q)^(p-»r),1qv1r 1p В сложной деструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка отрицает оба следствия, заключение отрицает оба основания. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности оснований. Схема сложной деструктивной дилеммы: (p-»q)^(r->s),1qv1s 1pv1r
Индуктивные умозаключения и их виды. Индуктивное умозаключение, его виды и логич структура. Индуктивное умозаключение - это такое умозаключение, в котором мысль развивается от знания меньшей степени общности к знанию большей степени общности, а заключение, вытекающее из посылок, носит преимущественно вероятностный характер. В зависимости от полноты исследования различают полную и неполную индукцию. Полная индукция - это умозаключение, в котором общее заключение делается на основе изучения всех предметов и явлений данного класса. Неполная индукция - это умозаключение, в котором на основе повторяемости признака у некоторых явлений определенного класса делается вывод о принадлежности этого признака всему классу явлений По способам обоснования заключения различают следующие виды неполной индукции: популярную и научную.
В популярной индукции на основе повторяемости одного и того же признака у некоторой части однородных предметов и при отсутствии противоречащего случая делается общее заключение, что все предметы этого рода обладают этим признаком. Научной индукцией называется умозаключение, в посылках которого наряду с повторяемостью признака у некоторых явлений класса содержится также информация о зависимости этого признака от определенных свойств явления. Полная индукция её роль в познании. Полная индукция - это умозаключение, в котором общее заключение делается на основе изучения всех предметов и явлений данного класса. В этом случае рассуждение имеет следующую схему: S 1 - Р S 2 - Р S 3 - Р Sn - Р Только S 1, S 2, S 3, ... Sn составляют класс К Каждый элемент К - Р Полная индукция дает достоверное знание, так как заключение делается только о тех предметах или явлениях, которые перечислены в посылках. условия: · точное знание числа предметов или явлений, подлежащих изучению; · убеждение, что признак принадлежит каждому элементу класса; · небольшое число элементов изучаемого класса; · целесообразность и рациональность. Неполная индукция и её виды. Неполная индукция - это умозаключение, в котором на основе повторяемости признака у некоторых явлений определенного класса делается вывод о принадлежности этого признака всему классу явлений. Неполная индукция имеет следующую схему рассуждений: S 1 - Р S 2 - Р S 3 - Р S 1, S 2, S 3, ... составляют класс К Вероятно, каждый элемент К - Р По способам обоснования заключения различают следующие виды неполной индукции: популярную и научную. Популярная индукция. В популярной индукции на основе повторяемости одного и того же признака у некоторой части однородных предметов и при отсутствии противоречащего случая делается общее заключение, что все предметы этого рода обладают этим признаком. Степень вероятности заключения в популярной индукции невысока, так как неизвестно, почему дело обстоит так, а не иначе. Выводы популярной индукции - часто начальный этап формирования гипотезы. Эффективность популярной индукции во многом зависит от того, насколько число случаев, закрепленных в посылках, по возможности будет: а) больше, б) разнообразнее, в) типичнее. Научная индукция и её познават. Роль. Научной индукцией называется умозаключение, в посылках которого наряду с повторяемостью признака у некоторых явлений класса содержится также информация о зависимости этого признака от определенных свойств явления. Если в популярном объективном обобщении вывод опирается на повторяемость признака, то научная индукция не ограничивается такой простой констатацией, а систематически исследует само явление, которое рассматривается как сложное, состоящее из ряда относительно самостоятельных компонентов или обстоятельств. Выводы научной индукции не только дают обобщенные знания, но и раскрывают причинную связь, что представляет особую ценность процесса познания. Метод сходства как метод научной индукции. Метод сходства: если два и более случая исследуемого явления сходны только в одном обстоятельстве, то это обстоятельство, вероятно, и есть причина (часть причины) данного явления. Например: При условиях АВС возникает явление а При условиях АDЕ возникает явление а При условиях АFG возникает явление а
Вероятно, обстоятельство А есть причина а
|
|||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 484; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.100.86 (0.011 с.) |