Свойства математического ожидания 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Свойства математического ожидания



1) Математическое ожидание постоянной величины равно самой этой постоянной:

.

2) Постоянный множитель можно выносить за знак математического ожидания:

.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

.

Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании:

.

 

Дисперсия случайной величины

 

Определение. Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

.

Пример. Для рассмотренного выше примера находим.

Математическое ожидание случайной величины равно:

.

Возможные значения квадрата отклонения:

; ;

; ;

; .

Дисперсия равна:

.

Однако, на практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям. Поэтому применяется другой способ.

 

Вычисление дисперсии

 

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания:

.

Доказательство. С учетом того, что математическое ожидание и квадрат математического ожидания – величины постоянные, можно записать:

.

Применим эту формулу для рассмотренного выше примера:

 

X            
X2            
p 0,0778 0,2592 0,3456 0,2304 0,0768 0,0102

 

;

Свойства дисперсии

 

1) Дисперсия постоянной величины равна нулю:

.

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

.

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин:

.

Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность появления события постоянна, равна произведению числа испытаний на вероятности появления и вероятность непоявления события в каждом испытании:

.

Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины.

Выбор каждого из 1000 изделий можно считать независимым испытанием, в котором вероятность появления изделия первого сорта одинакова и равна р = 0,96.

Таким образом, закон распределения может считаться биноминальным.

Пример. Найти дисперсию дискретной случайной величины Х – числа появлений события А в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что

Т.к. случайная величина Х распределена по биноминальному закону, то

Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

По формуле дисперсии биноминального закона получаем:

;

Пример. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно ; ; . Найти математическое ожидание и дисперсию числа отказавших приборов.

Принимая за случайную величину число отказавших приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4.

Для составления закона распределения этой случайной величины необходимо определить соответствующие вероятности. Примем .

1) Не отказал ни один прибор:

2) Отказал один из приборов:

0,302.

3) Отказали два прибора:

4) Отказали три прибора:

5) Отказали все приборы:

Получаем закон распределения:

 

         
         
0,084 0,302 0,38 0,198 0,036

 

Математическое ожидание:

Дисперсия:

Определение. Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии:

.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин:

.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 342; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.98.108 (0.009 с.)