Характеристики химических связей: энергия, длина, полярность, валентный угол, насыщаемость, направленность, кратность. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характеристики химических связей: энергия, длина, полярность, валентный угол, насыщаемость, направленность, кратность.



Химическая связь – важнейшее понятие химии, позволяющее описать более детально химические свойства соединений, а также их строение и физические свойства. Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица. Основные характеристики химической связи:

Энергией связи – называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состоянии. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколько одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи.

Длина связи – расстояние между ядрами атомов в соединении (нм)

Полярность связи - смещение электронного облака в сторону более электроотрицательного атома.

Валентные углы - Это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в молекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°. Совокупность длин связей и валентных углов в химической частице определяет ее пространственное строение.

Насыщаемость - свойство атома образовывать не любое, а определенное число связей с другими атомами.

Направленность – свойство, зависящее от направления перекрывания атомных орбиталей (АО). сигма - связи возникают при перекрывании АО вдоль линии связи, соединяющей ядра атомов; пи - связи образуются при перекрывании АО вне линии, соединяющих ядра атомов.

Кратность связи – число связей между атомами двух элементов. Чем больше кратность связи, тем больше энергия связи и тем меньше длина связи.

 

7. Ковалентная связь (КС). Условия образования ковалентной связи, механизмы образования, свойства связи, критерий прочности.

КС – связь, осуществляемая за счет электронной пары, принадлежащей обоим атомам.

Условия образования КС: она образуется между атомами с высокой электроотрицательностью. (электоротр-ть – способность атомов притягивать к себе электроны).

∆Χ – разность электроотрицательности 2-х атомов, если ∆Χ≤1.4, связь полярная

КС м.б. образована:

1 – между любыми атомами неметаллов (т.к. у всех неметаллов высокие значения электроотр-ти), пр: HCl, значения электроотр-ти – по таблицам, у Н=2.1, у Cl=3.1, - ∆Χ=3.1-2.1=1≤1.4, это связь ковалентная и полярная.

2 – между атомами неметалла и металла, если металл находится в высокой степени окисления, пр: CrCl6 для Cr=2.4, ∆Χ=3.1-2.4=0.7≤1.4 - это ковалентная полярная связь.

Механизмы образования КС:

1- обменный механизм - 2 атома обмениваются электронами, образуя общую электронную пару, принадлежащую обоим и называемую «поделенная». Примером могут служить молекулы летучих неорганических соединений: НСl, Н2О, Н2S, NН3 и др. Образование молекулы НСl можно представить схемой Н.+ .Сl: = Н:Cl: Электронная пара смещена к атому хлора, так как относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1).

2 – донорно-акцепторный механизм: - заключается в том, что пара электронов одного атома (донора) занимает свободную орбиталь другого атома (акцептора) Рассмотрим в качестве примера механизм образования иона аммония . В молекуле аммиака атом азота имеет неподеленную пару электронов двухэлектронное облако): .

У иона водорода свободна (не заполнена) 1s-орбиталь, что можно обозначить как □H+. При образовании иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, т.е. оно превращается в молекулярное электронное облако. А значит, возникает четвертая ковалентная связь. Процесс образования иона аммония можно представить схемой

+ □H+ →

Заряд иона водорода становится общим (он делокализован, т.е. рассредоточен между всеми атомами), а двухэлектронное облако (неподеленная электронная пара), принадлежащее азоту, становится общим с водородом.

Ковалентная связь бывает полярной (сложные молекулы) и неполярной (простые молекулы).

 

Свойства ковалентной связи

Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

Насыщаемость — характерное свойство ковалентной связи. Она проявляется в способности атомов образовывать ограниченное число ковалентных связей. Это связано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной химической связи. Данное свойство определяет состав молекулярных химических соединений. Так, при взаимодействии атомов водорода образуется молекула Н2, а не Н3. Третий атом водорода не может присоединиться, так как спин его электрона окажется параллельным спину одного из спаренных электронов в молекуле. Способность к образованию того или иного числа ковалентных связей у атомов различных элементов ограничивается получением максимального числа неспаренных валентных электронов.

Направленность — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечивающей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее прочная химическая связь.

8. Перекрывание атомных орбиталей как условие образования связи. Типы перекрывания (сигма, пи). Гибридизация атомных орбиталей. Кратные связи.

Химическая связь между атомами обусловливается перекрыванием электронных облаков.

Перекрывание атомных орбиталей вдоль линии, связывающей ядра атомов, приводит к образованию σ-связей. Между двумя атомами в химической частице возможна только одна σ-связь. Все σ-связи обладают осевой симметрией относительно межъядерной оси. Совокупность направленных, строго ориентированных в пространстве σ-связей создает структуру химической частицы.

При дополнительном перекрывании атомных орбиталей, перпендикулярных линии связи, образуются π-связи.

Связь двух атомов может осуществляться более чем одной парой электронов. В результате этого между атомами возникают кратные связи:

Одинарная (σ) Двойная (σ +π) Тройная (σ + π + π)
F−F O=O N≡N

 

Гибридизация атомных орбиталей

При определении геометрической формы химической частицы следует учитывать, что пары внешних электронов центрального атома, в том числе и не образующие химическую связь, располагаются в пространстве как можно дальше друг от друга.

Сущность гибридизации атомных орбиталей состоит в том, что электрон вблизи ядра связанного атома характеризуется не отдельной атомной орбиталью, а комбинацией атомных орбиталей с одинаковым главным квантовым числом. Такая комбинация называется гибридной (гибридизованной) орбиталью. Как правило, гибридизация затрагивает лишь высшие и близкие по энергии атомные орбитали, занятые электронами.

В результате гибридизации появляются новые гибридные орбитали (рис.24), которые ориентируются в пространстве таким образом, чтобы расположенные на них электронные пары (или неспаренные электроны) оказались максимально удаленными друг от друга, что соответствует минимуму энергии межэлектронного отталкивания. Поэтому тип гибридизации определяет геометрию молекулы или иона.

ТИПЫ ГИБРИДИЗАЦИИ

Тип гибридизации Геометрическая форма Угол между связями Примеры
sp линейная 180o BeCl2
sp2 треугольная 120o BCl3
sp3 тетраэдрическая 109,5o CH4
sp3d тригонально-бипирамидальная 90o; 120o PCl5
sp3d2 октаэдрическая 90o SF6

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 6101; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.84.155 (0.013 с.)