Дослід 9.2..1. Якісна реакція на іон хлору 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дослід 9.2..1. Якісна реакція на іон хлору



У три пробірки налити по 3-4 краплі розчинів наступних хлоридів: у першу – калій хлориду, у другу – барій хлориду, у третю – ферум (III) хлориду. В кожну пробірку додати по 2 краплі розчину аргентум нітрату. Порівняти результати спостережень у всіх трьох пробірках. Що між ними спільного? Скласти рівняння реакцій, що відбулися.

У всі пробірки додати по 1-3 краплі концентрованого розчину амоніаку і розмішати. Що відбувається з осадом? Чому осад у третій пробірці не розчинився? Що сталося з його кольором?

Додати у кожну пробірку по 1-3 краплі концентрованої нітратної кислоти. Які зміни відбуваються? Що можна сказати про поведінку аргентум хлориду в амоніаку у кислому середовищі?

Дослід 9.2.2. Взаємодія хлоридної кислоти з металами

У три пробірки помістити: у першу – 1-3 гранули цинку, у другу – трохи залізних стружок, у третю – мідних стружок. В кожну пробірку додати розведеної хлоридної кислоти і спостерігати, які з цих металів взаємодіють із хлоридною кислотою. Скласти рівняння реакцій, що відбулися.

Дослід 9.2.3. Окисні властивості пероксиду водню

У пробірку внести5 крапель розчину KI i 3 краплі розчину Н2О2. Чи змінився колір розчину? Яка відбулася реакція? Випробувати розчин на наявність йоду за допомогою 1-2 крапель розчину крохмалю.

Дослід 9.2.4. Обвуглювання паперу сульфатною кислотою

Візьміть скляну паличку і напишіть що-небудь на білому папері розведеною сульфатною кислотою. Висушіть написане, високо тримаючи папір над полум’ям пальника. Спочатку на папері майже не видно написаного, а згодом на білому фоні чітко виступають чорні літери. Поясніть причину цього явища.

9.3. Контрольні запитання

1. Хімія Сульфуру та його основних сполук. Гідроген сульфід. Використання сполук Cульфуру для виробництва сільськогосподарських препаратів.
2. Закінчити рівняння реакцій, вказати умови їх проведення, якщо вони відрізняються від звичайних (нагрівання, каталізатори, тиск і т.ін.): Cl2 + KOH ® KBr + H2SO4(конц) ® Zn + H2SO4(конц) ®
3. Роль галогенів в живих організмах. Особливості електронної будови атомів галогенів. Хімія Хлору. Взаємодія хлору з металами і неметалами. Гідроген хлорид і хлоридна кислота.
4. Закінчити рівняння реакцій, вказати умови їх проведення, якщо вони відрізняються від звичайних (нагрівання, каталізатори, тиск і т.ін.): P + H2SO4(конц) ® Cl2 + H2O ® H2S + I2 ®
5. Оксиди та оксигенвмісні кислоти хлору. Застосування хлору у сільському господарстві.
6. Закінчити рівняння реакцій, вказати умови їх проведення, якщо вони відрізняються від звичайних (нагрівання, каталізатори, тиск і т.ін.): H2S + O2 ® Cl2 + H2S ® Na2O2 + H2SO4 ® H2S + H2SO3 ®

ЛАБОРАТОРНА РОБОТА № 10

ХІМІЯ D-ЕЛЕМЕНТІВ. ХІМІЧНІ ВЛАСТИВОСТІ СПОЛУК

МАНГАНУ, ФЕРУМУ, ЦИНКУ ТА КУПРУМУ

Теоретична частина

Манган належить до VIIB групи періодичної системи елеменитів Д.І. Менделєєва. На зовнішньому енергетичному рівні атома цього елемента знаходиться два s-електрони, а на d-підрівні передостаннього енергетичного рівня – 5d-електронів, тобто для нього характерний електронний стан d5s2. У незбудженому стані непарними є п’ять d-електронів, а при збудженні – усі сім електронів зовнішнього і передзовнішнього енергетичних рівнів стають валентними. Тому максимальний ступінь окиснення Мангану – +7.

Манган відноситися до активних металів. На повітрі він окиснюється і покривається видимою плівкою оксидів, спочатку червонуватою, потім –майже чорною. З водою на холоді манган взаємодіє дуже повільно; при підвищенні температури швидкість реакції окиснення мангану водою збільшується. У розбавлених кислотах манган розчиняється з утворенням солей Мангану (II). У розчинах лугів манган стійкий. У сполуках Манган має ступені окиснення: +2, +3, +4, +6 і +7. Найбільш стійкі сполуки Mn(II), Mn(IV) і Mn(VII). З підвищенням ступеня окиснення характер оксидів і гідроксидів змінюється від основного до кислотного.

У порошкоподібному стані манган при нагріванні безпосередньо сполучається з галогенами, сіркою, азотом, фосфором, кремнієм, утворюючи бінарні сполуки, в яких має ступінь окиснення +2:

Mn + Cl2 → MnCl2

Mn + S → MnS

3Mn + N2 → Mn3N2

3Mn + 2P → Mn3P2

2Mn + Si → Mn2Si

У ряду активностей металів Манган знаходиться набагато лівіше від водню, тому він здатний витісняти водень із води та кислот. З холодною водою Манган взаємодіє дуже повільно, але при нагріванні реакція значно прискорюється:

Mn + 2Н2О → Mn(ОН)2 + Н2

Манган легко розчиняється у воді у присутності амоній хлориду, який заважає утворенню малорозчинного марган (II) гідроксиду:

Mn + 2Н2О + 2NH4Cl → MnCl2 + 2NH4OH + H2

З розведеними кислотами (крім HNO3) Манган взаємодіє з виділенням водню:

Mn + НCl → MnCl2 + Н2

З концентрованими сульфатною та нітратною кислотами – з утворенням води:

Mn + 2H2SO4(к) → MnSO4 + SO2 + 2H2O

3Mn + 8HNO3(к) → 3Mn(NO3)2 + 2NO + 4H2O

При взаємодії з солями металів, що знаходяться в ряду активності правіше нього, Манган їх витісняє:

Mn + FeSO4 → MnSO4 + Fe

До оксигеновмісних сполук Мангану відносяться наступні:

MnO – манган (II) оксид Mn2O3 – манган (III) оксид MnO2 – манган (IV) оксид Mn2O7 – манган (VII) оксид   Mn(OH)2 - манган (II) гідроксид Mn(OH)3 - манган (III) гідроксид Mn(OH)4 - манган (IV) гідроксид H4MnO4 – ортоманганітна кислота HMnO4 – перманганатна кислота H2MnO4 – манганатна кислота

Порівняння властивостей гідроксидів Мангану, свідчить про те, що зі збільшенням ступеня окиснення Мангану кислотні властивості цих речовин зростають, а основні – зменшуються:

посилення кислотних властивостей

Mn(OH)2, Mn(OH)4, H2MnO4, HMnO4

посилення основних властивостей

Манган входить до складу цілого ряду ферментних систем, які обумовлюють окисно-відновні процеси внутрішньоклітинного обміну речовин. Встановлено, що в рослинах, у залежності від ступеня окиснення, манган, з одного боку, сприяє виділенню кисню і бере участь у відновних реакціях фотосинтезу, а з іншого – активно бере участь в окисненні карбонових кислот, а відповідно, і в процесі дихання рослин. Манган сприяє фіксації атмосферного азоту бульбочковими бактеріями, а також збільшенню кількості амінокислот.

Ферум входить до VIIIB групи періодичної системи елементів Д.І. Менделеєва. На зовнішньому енергетичному рівні атома цього елемента знаходяться 2s-електрони. На d-підрівні передостаннього енергетичного рівня – 6 електронів. У незбудженому стані число непарних електронів у Феруму 4. У атома Феруму при збудженні атомів за рахунок переміщення одного з 4s-електронів в p-підрівень число непарних електронів збільшується до 6. Найбільш типовими ступенями окиснення Феруму є +2 і +3.

Залізо в сухому повітрі і кисні окиснюється дуже повільно, покрива-ючись при цьому тонкими плівками оксидів. При високих температурах – з’єднується з киснем, утворюючи оксиди: Fe2O3, Fe3O4, FeO. Із оксидів і гідроксидів Феруму лише Fe2O3 і Fe(OH)3 амфотерні з переважанням основних властивостей. Свій максимальний ступінь окиснення +6 Ферум виявляє лише в солях фератної кислоти – фератах (K2FeO4, BaFeO4).

Залізо відноситься до металів із середнім рівнем відновних властивостей. При невисоких температурах залізо вступає в реакцію з багатьма простими речовинами – вуглецем, азотом, фосфором, кремнієм, сіркою та галогенами:

3Fe + C → Fe3C

4Fe + N2 → 2Fe2N

2Fe + P → Fe2P

2Fe + Si → FeSi

З галогенами та сіркою залізо утворює солі відповідних кислот:

2Fe + 3Cl2 → 2FeCl3

Fe + S → FeS

З лугами залізо не взаємодіє, але легко розчиняється у розведених кислотах, при цьому утворюються сіль феруму (II) і виділяється водень:

Fe + H2SO4 → FeSO4 + H2

Хлоридна і розбавлена сульфатна кислоти окиснюють Ферум до Fe(II):

Fe + 2HCl ® FeCl2 + H2­,

концентровані HNO3 і H2SO4, а також “царська горілка” – до Fe (IIІ):

2Fe + 6H2SO4 ® Fe2(SO4)3 + 3SO2­ + 6H2O

Із водних розчинів солей залізо витісняє метали, що знаходяться у ряду активності правіше від нього:

Fe + СuSO4 → FeSO4 + Cu

Сульфат заліза (залізний купорос) FeSO4 • 7H2O – використовується у сільському господарстві як інсектицид. Серед усіх важких металів, що знаходяться в живих організмах, Феруму належить головна роль. Органічні молекули, до складу яких входить Ферум, беруть активну участь у біохімічних процесах, що відбуваються в процесі дихання і фотосинтезу. Основу реакцій, які відбуваються в процесі дихання рослин, так як і при фотосинтезі, складають окисно-відновні процеси. Для того щоб організм зміг використати енергію, акумульовану в органічних речовинах, вони повинні бути окиснені киснем повітря. Цей процес здійснюється за допомогою ферумвмісних ферментів.

Цинк відноситься до IIB групи періодичної системи елементів Д.І. Менделєєва. На зовнішньому енергетичному рівні його атома знаходиться 2s-електрони. Електронна конфігурація передзовнішнього енергетичного рівня s2p6d10 стабільна, і електрони цього рівня не беруть участі в утворенні хімічних зв'язків. У атома цього елемента у нормальному стані відсутні непарні електрони. Збудження атомів переводить один s-електрон на p-підрівень; при цьому електронна конфігурація зовнішнього енергетичного рівня переходить в s1p1 і стає здатним до утворення двох хімічних зв'язків. Цинк утворює сполуки виключно з ступенем окиснення +2.

Стійкість цинку на повітрі і у воді пояснюється захисною плівкою (ZnOH)2CO3 на його поверхні. У розчинах лугів плівка розчиняється, що дозволяє цинку вступати в реакцію з водою до повного розчинення металу.

Цинк доволі активний метал, він утворює сполуки майже з усіма неметалами. Так, наприклад, галогеніди цинку одержують шляхом прямої взаємодії елементів:

Zn + Cl2 → ZnCl2

або розчиненням металічного цинку, оксиду та сульфіду у відповідних кислотах:

Zn + 2НCl → ZnCl2 + Н2

ZnО + 2НCl → ZnCl2 + Н2О

ZnS + 2НCl → ZnCl2 + Н2S↑

З сіркою цинк утворює нерозчинний у воді сульфід ZnS:

Zn + S → ZnS

При нагріванні цинкового пилу (600°С) в атмосфері амоніаку утворюється нітрид цинку:

3Zn + 2NH3 → Zn3N2 + 3H2↑,

А з ацетиленом – карбід цинку:

Zn + С2Н2 → ZnС2 + Н2↑.

Цинк – сильний відновник, здатний заміщувати метали (Mn, Fe, Ni, Cu, Cd) у їх солях. Виділення кадмію із розчинів за допомогою цинкового пилу (цементація) є головним промисловим методом його добування:

CdSO4 + Zn → ZnSO4 + Cd

Цинк легко витісняє водень з розведених кислот-неокисників:

Zn + 2HBr → ZnBr2 + H2

При взаємодії з розведеною нітратною кислотою цинк утворює нітроген (І) оксид або амонійну сіль:

Zn + 10HNO3 ® 4Zn(NO3)2 + N2O + 5H2O;

4Zn + 10HNO3 ® 4Zn(NO3)2 + NH4NO3 + 3H2O.

Солі оксигеновмісних кислот цинку – нітрати, сульфати, хлорати – розчинні у воді, а карбонати, фосфати, силікати – у воді малорозчинні.

При нагріванні з киснем цинк утворює амфотерний оксид ZnO – гексагональні кристали білого кольору, практично нерозчинні у воді. Виявляючи амфотерні властивості він реагує як з кислотами, так і з лугами:

ZnО + 2HCl ® ZnCl2 + H2O

ZnO + 2NaOH + H2O ® Na2[Zn(OH)4].

Цинк гідроксид Zn(OH)2 випадає у вигляді білого осаду при дії лугів на розчини солей цинку:

ZnSO4 + 2NaOH ® Zn(OH)2¯ + Na2SO4.

Цинк гідроксид – амфотерна сполука, він легко розчиняється в кислотах з утворенням солей цинку:

Zn(OH)2 + 2HCl ® ZnCl2 + 2H2O

і в надлишку лугів з утворенням цинкатів:

Zn(OH)2 + 2NaOH ® Na2ZnO2 + 2H2O.

Цинк – один із сільськогосподарських мікроелементів: при нестачі його у ґрунті у рослин порушується обмін вуглеводів, може понизитись вміст хлорофілу. Як складова частина ферментів вуглеводного обміну Цинк активує їх і сприяє підвищенню інтенсивності фотосинтезу. Із солей цинку найбільше практичне застосування у сільському господарстві має цинковий купорос ZnSO4 × 7H2O, який використовують як мікродобриво.

Купрум знаходиться у IB групі періодичної системи елементів Д.І. Менделєєва. Хімічні властивості Купруму обумовлені структурою його зовнішнього електронного рівня – 3d104s1. Оскільки Купрум є переостаннім d-елементом, на d-підрівні його атома повинно було розташуватись 9 електронів. Але завдяки стійкості електронної конфігурації d10 відбувається «провал» s-електрона на d-підрівень, що доцільно з енергетичної точки зору. Наявність одного s-електрона обумовлює існування цілої групи сполук, в яких Купрум виявляє ступінь окиснення +1. Але s-електрон, що провалився на d-підрівень, зберігає певну мобільність і при наявності елементів-окисників може переходити до них. У цих випадках Купрум виявляє ступінь окиснення +2.

При знаходженні на повітрі мідь поступово покривається зеленим нальотом карбонату гідроксокупруму (CuOH)2CO3. Хлоридна і розбавлена сульфатна кислота не діють на мідь, але сумісна дія окисників і тих же кислот призводить до розчинення міді. Нітратна кислота енергійно діє на мідь, причому утворюється сіль купруму і нітроген оксид (NO або NO2 залежно від концентрації кислоти).

Хімічна активність Купруму невисока. При помірному нагріванні Купрум сполучається з галогенами, сіркою, утворюючи бінарні сполуки солеподібного типу:

Cu + І2 → CuІ2

2Cu + S → Cu2S

Більшість солей купруму (І) – хлориди, броміди, йодиди, сульфіди, ціаніди, тіоціанати погано розчиняються у воді. Вони легко окиснюються навіть молекулярним киснем повітря:

4CuCl + O2 +4HCl → 4CuCl2 + 2H2O

Досить легко мідь за механізмом окисно-відновних процесів взаємодіє з розведеною і концентрованою нітратною кислотою та концентрованою сульфатною кислотою:

Cu + 4HNO3(к) → Cu(NO3)2 + 2NO2 +2H2O

3Cu + 8HNO3(р) → 3Cu(NO3)2 + 2NO +4H2O

Cu + 2H2SO4(к) → CuSO4 + SO2 +2H2O

З Оксигеном Купрум утворює два нерозчинні у воді оксиди: Cu2О – купрум (І) оксид та CuО – купрум (ІІ) оксид. Вони реагують з кислотами утворюючи солі та з водним розчином амоніаку утворюючи комплексні солі:

Cu2О + 2HCl → 2CuCl + H2O

CuO + H2SO4 → CuSO4 + H2O

Cu2О + 4NH3 + H2O → 2[Cu(NH3)4]OH

CuО + 4NH3 + H2O → [Cu(NH3)4](OH)2

Купрум(II) гідроксид Cu(OH)2 є дуже слабкою основою. Ця сполука виражає слабкі амфотерні властивості – розчиняється в концентрованих розчинах лугів, а також в розчинах кислот:

Cu(OH)2 + 2NaOH → Na2[Cu(OH)4]

Cu(OH)2 + 2HNO3 → Cu(NO3)2 + 2H2O

Купрум (II) гідроксид Cu(ОН)2 існує у двох формах – аморфній та кристалічній. Аморфний осад легко втрачає воду навіть при зберіганні під водою і перетворюється в купрум (ІІ) оксид. Кристалічна форма більш стійка і витримує температуру до 100°С.

Купрум приймає участь у вуглеводному і білковому обмінах у рослинах. Під його впливом посилюється синтез білків, вуглеводів і жирів. Нестача цього елементу викликає у рослин зниження активності синтетичних процесів і призводить до накопичення розчинних вуглеводів, амінокислот та інших продуктів розпаду складних органічних речовин.

Із солей Купруму у сільському господарстві найбільше значення мають: CuSO4 • 5H2O – купрум сульфат (мідний купорос) використовується в суміші з вапняковим молоком («бордоська рідина») як інсектицид для захисту плодових культур, засіб боротьби із філоксерою – збуджувачем хвороби винограду, з фітофторою – захворюванням томатів та картоплі. У хімічній промисловості з нього добувають інші купрумвмісні пестициди (хлорокис міді 3Cu(OH)2•CuCl2•H2O, паризьку зелень Cu(CH3COO)2•3Cu(AsO2)2). Солі Купруму Cu(NO3)2 • 3H2O – купрум (ІІ) нітрат – використовують як фунгіцид, Cu(CH3COO)2 • H2O – купрум ацетат (мідянка) – використовують як фунгіцид або як сировину для одержання пестицидів.

Експериментальна частина



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 189; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.84.155 (0.057 с.)