Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Типы взаимодействий элементарных

Поиск

Частиц

 

Согласно современным представлениям, в природе осуществляется четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.

Сильное, или ядерное, взаимодействие обусловливает связь протонов и нейтронов в ядрах атомов и обеспечивает исключительную прочность этих образований, лежа щую в основе стабильности вещества в земных условиях.

Электромагнитное взаимодействие характеризуется как взаимодействие, в основе которого лежит связь с электромагнитным полем. Оно характерно для всех элементарных частиц, за исключением нейтрино, антинейтрино и фотона. Электромагнитное взаимодействие, в частности, ответственно за существование атомов и молекул, обусловливая взаимодействие в них положительно заряженных ядер и отрицательно заряженных электронов.

Слабое взаимодействие — наиболее медленное из всех взаимодействий, протека ющих в микромире. Оно ответственно за взаимодействие частиц, происходящих с уча стием нейтрино или антинейтрино (например, b-распад, m-распад), а также за безнейтринные процессы распада, характеризующиеся довольно большим временем жизни распадающейся частицы (t ≳ 10-10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц оно пренебрежимо мало и, по-видимому, в процессах микромира несущественно.

Сильное взаимодействие примерно в 100 раз превосходит электромагнитное и в 1014 раз — слабое. Чем сильнее взаимодействие, тем с большей интенсивностью протекают процессы. Так, время жизни частиц, называемых резонансами, распад которых описывается сильным взаимодействием, составляет примерно 10-23 с; время жизни p°-мезона, за распад которого ответственно электромагнитное взаимодействие, составляет 10-16 с; для распадов, за которые ответственно слабое взаимодействие, характерны времена жизни 10-10 —10-8 с. Как сильное, так и слабое взаимодействия — короткодействующие. Радиус действия сильного взаимодействия составляет примерно 10-15 м, слабого — не превышает 10-19 м. Радиус действия электромагнитного взаимодействия практически не ограничен.

Элементарные частицы принято делить на три группы:

1) фотоны; эта группа состоит всего лишь из одной частицы — фотона — кванта электромагнитного излучения;

2) лептоны (от греч. «лептос» — легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептой — t-лептон, или таон, с массой примерно 3487me, а также соответствующие им античастицы. Название лeптонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

3) aдроны (от греч. «адрос» — крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.

Для всех типов взаимодействия элементарных частиц выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда.

Характерным признаком сильных взаимодействий является зарядовая независимость ядерных сил. Как уже указывалось (см. § 254), ядерные силы, действующие между парами р - р, n – n, р - n, одинаковы. Поэтому если бы в ядре осуществлялось только сильное взаимодействие, то зарядовая независимость ядерных сил привела бы к одинаковым значениям масс нуклонов (протонов и нейтронов) и всех p-мезонов. Различие в массах нуклонов и соответственно я-мезонов обусловлено электромагнитным взаимодействием: энергии взаимодействующих заряженных и нейтральных частиц различны, поэтому и массы заряженных и нейтральных частиц оказываются неодинаковыми.

Зарядовая независимость в сильных взаимодействиях позволяет близкие по массе частицы рассматривать как различные зарядовые состояния одной и той же частицы. Так, нуклон образует дублет (нейтрон, протон), p-мезоны — триплет (p+,p-, p°) и т. д. Подобные группы «похожих» элементарных частиц, одинаковым образом участвующих в сильном взаимодействии, имеющие близкие массы и отличающиеся зарядами, называют изотопическими мультнплетами. Каждый изотопический мультиплет характеризуют изотопическим спином (нзоспнном) — одной из внутренних характеристик адронов, определяющей число (n) частиц в изотопическом мультиплете: n = 2I + 1. Тогда изоспин нуклона I = 1/2 (число членов в изотопическом мультиплете нуклона равно двум), изоспин пиона I = 1 (в пионном мультиплете n = 3) и т. д. Изотопический спин характеризует только число членов в изотопическом мультиплете и никакого отношения к рассматриваемому ранее спину не имеет.

Исследования показали, что во всех процессах, связанных с превращениями элементарных частиц, обусловленных зарядово-независимыми сильными взаимодействиями, выполняется закон сохранения изотопического спина. Для электромагнитных и слабых взаимодействий этот закон не выполняется. Так как электрон, позитрон, фотон, мюоны, нейтрино и антинейтрино в сильных взаимодействиях участия не принимают, то им изотопический спин не приписывается.

 

Частицы и античастицы

 

Гипотеза об античастице впервые возникла в 1928 г., когда П. Дирак на основе релятивистского волнового уравнения предсказал существование позитрона (см. § 263), обнаруженного спустя четыре года К. Андерсоном в составе космического излучения.

Электрон и позитрон не являются единственной парой частица — античастица. На основе релятивистской квантовой теории пришли к заключению, что для каждой элементарной частицы должна существовать античастица (принцип зарядового сопряжения). Эксперименты показывают, что за немногим исключением (например, фотона и p0-мезона), действительно, каждой частице соответствует античастица.

Из общих положений квантовой теории следует, что частицы и античастицы должны иметь одинаковые массы, одинаковые времена жизни в вакууме, одинаковые по модулю, но противоположные по знаку электрические заряды (и магнитные моменты), одинаковые спины и изотопические спины, а также одинаковые остальные квантовые числа, приписываемые элементарным частицам для описания закономерностей их взаимодействия (лептонное число (см. § 275), барионное число (см. § 275), странность (см. § 274), очарование (см. § 275) и т.д.). До 1956 г. считалось, что имеется полная симметрия между частицами и античастицами, т. е. если какой-то процесс идет между частицами, то должен существовать точно такой же (с теми же характеристиками) процесс между античастицами. Однако в 1956 г. доказано, что подобная симметрия характерна только для сильного и электромагнитного взаимодействий и нарушается для слабого.

Согласно теории Дирака, столкновение частицы и античастицы должно приводить к их взаимной аннигиляции, в результате которой возникают другие элементарные частицы или фотоны. Примером тому является рассмотренная реакция (263.3) аннигиляции пары электрон — позитрон (-10 е + + 10 е ® 2g).

После того как предсказанное теоретически существование позитрона было подтверждено экспериментально, возник вопрос о существовании антипротона и антинейтрона. Расчеты показывают, что для создания пары частица — античастица надо затратить энергию, превышающую удвоенную энергию покоя пары, поскольку частицам необходимо сообщить весьма значительную кинетическую энергию. Для создания р - р̃-пары необходима энергия примерно 4,4 ГэВ. Антипротон был действительно обнаружен экспериментально (1955) при рассеянии протонов (ускоренных на крупней ем в то время синхрофазотроне Калифорнийского университета) на нуклонах ядер мишени (мишенью служила медь), в результате которого рождалась пара р - р̃.

Антипротон отличается от протона знаками электрического заряда и собственного магнитного момента. Антипротон может аннигилировать не только с протоном, но и с нейтроном:

(273.1) (273.2) (273.3)

Годом позже (1956) на том же ускорителе удалось получить антинейтрон (ñ) и осуществить его аннигиляцию. Антинейтроны возникали в результате перезарядки антипротонов при их движении через вещество. Реакция перезарядки р̃состоит в об мене зарядов между нуклоном и антинуклоном и может протекать по схемам

(273.4) (273.5)

Антинейтрон ñ отличается от нейтрона nзнаком собственного магнитного момента. Если антипротоны — стабильные частицы, то свободный антинейтрон, если он не испытывает аннигиляции, в конце концов претерпевает распад по схеме

Античастицы были найдены также для p+-мезона, каонов и гиперонов (см. § 274). Однако существуют частицы, которые античастиц не имеют, — это так называемые истинно нейтральные частицы. К ним относятся фотон, p°-мезон и η-мезон (его масса равна 1074me, время жизни 7×10-19 с; распадается с образованием p-мезонов и γ-квантов). Истинно нейтральные частицы не способны к аннигиляции, но испытывают взаимные превращения, являющиеся фундаментальным свойством всех элементарных частиц. Можно сказать, что каждая из истинно нейтральных частиц тождественна со своей античастицей.

Большой интерес и серьезные трудности представляли доказательство существования антинейтрино и ответ на вопрос, являются ли нейтрино и антинейтрино тождественными или различными частицами. Используя мощные потоки антинейтрино, получаемые в реакторах (осколки деления тяжелых ядер испытывают β-распад и, согласно (258.1), испускают антинейтрино), американские физики Ф. Рейнес и К. Коуэн (1956) надежно зафиксировали реакцию захвата электронного антинейтрино протоном:

(273.6)

Аналогично зафиксирована реакция захвата электронного нейтрино нейтроном:

(273.7)

Таким образом, реакции (273.6) и (273.7) явились, с одной стороны, бесспорным доказательством того, что v e и ṽ e, — реальные частицы, а не фиктивные понятия, введенные лишь для объяснения β-распада, а с другой — подтвердили вывод о том, что v e и ṽ e — различные частицы.

В дальнейшем эксперименты по рождению и поглощению мюонных нейтрино показали, что и vm и ṽm — различные частицы. Также доказано, что пара v e, vm — различные частицы, а пара v e, ṽ e не тождественна паре vm, ṽm Согласно идее Б. М. Понтекорво (см. § 271), осуществлялась реакция захвата мюонного нейтрино (получались при распаде p+®m+ + vm (271.1)) нейтронами и наблюдались возникающие частицы. Оказалось, что реакция (273.7) не идет, а захват происходит по схеме

т. е. вместо электронов в реакции рождались m--мюоны. Это и подтверждало различие между v e и vm

По современным представлениям, нейтрино и антинейтрино отличаются друг от друга одной из квантовых характеристик состояния элементарной частицы — спнральностью, определяемой как проекция спина частицы на направление ее движения (на импульс). Для объяснения экспериментальных данных предполагают, что у нейтрино спин s ориентирован антипараллельно импульсу р, т. е. направления р и s образуют левый винт и нейтрино обладает левой спиралытостью (рис. 349, а). У антинейтрино направления р и s образуют правый винт, т. е. антинейтрино обладает правой спнральностью (рис. 349, б). Это свойство справедливо в равной мере как для электронного, так и для мюонного нейтрино (антинейтрино).

Для того чтобы спиральность могла быть использована в качестве характеристики нейтрино (антинейтрино), масса нейтрино должна приниматься равной нулю. Введение спиральности позволило объяснить, например, нарушение закона сохранения четности (см. § 274) при слабых взаимодействиях, вызывающих распад элементарных частиц и β-распад. Так, m--мюону приписывают правую спиральность, m+-мюону — левую.

 

 

Рис. 349

 

После открытия столь большого числа античастиц возникла новая задача — найти антиядра, иными словами, доказать существование антивещества, которое построено из античастиц, так же как вещество из частиц. Антиядра действительно были обнаружены. Первое антиядро — антидейтрон (связанное состояние р̃ и ñ — было получено в 1965 г. группой американских физиков под руководством Л. Ледермана. Впоследствии на Серпуховском ускорителе были синтезированы ядра антигелия (1970) и антитрития (1973).

Следует, однако, отметить, что возможность аннигиляции при встрече с частицами не позволяет античастицам длительное время существовать среди частиц. Поэтому для устойчивого состояния антивещества оно должно быть от вещества изолировано. Если бы вблизи известной нам части Вселенной существоволо скопление антивещества, то должно было бы наблюдаться мощное аннигиляционное излучение (взрывы с выделением огромных количеств энергии). Однако пока астрофизики ничего подобного не зарегистрировали. Исследования, проводимые для поиска антиядер (в конечном счете антиматерии), и достигнутые в этом направлении первые успехи имеют фундаментальное значение для дальнейшего познания строения вещества.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 423; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.40.53 (0.009 с.)