Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Открытая транспортная задачаСодержание книги
Поиск на нашем сайте
Может оказаться, что сумма поставок не равна сумме потребностей, в этом случае имеем открытую модель транспортной задачи. Рассмотрим решение открытой транспортной задачи на примере. Пример 2. Минимизировать транспортные расходы по доставке грузов от поставщиков А1, А2, А3 к потребителям В1, В2, В3, если заданы объем поставок и потребностей, а также тарифы по доставке единицы груза от каждого поставщика до каждого потребителя (в д.е.).
Сумма поставок 8+20+24=52, сумма потребностей 7+17+23=47. Сумма поставок не равна сумме потребностей, поэтому мы имеем открытую модель транспортной задачи. Введем фиктивного потребителя с потребностью, равной 52-47=5 (ед. товара).
7 9 5 0
Дочертим еще один столбец в таблице. Основные тарифы в этом столбце возьмем равные нулю. Далее решаем задачу как закрытую модель. Составим опорный план по методу северо-западного угла. Число загруженных клеток должно равно m+ n-1=3+4- -1=6 – невырожденный план. Улучшаем план по методу потенциалов. В двух клетках получается одинаковая разность (косвенный тариф минус основной), она составляет 4 единицы. Если построить циклы с обеими этими клетками, то оба цикла дадут перемещение одинаковой стоимости, поэтому можно брать любой из них. Построим цикл с загружаемой клеткой (2;1). По циклу перемещаем наименьшую отрицательную поставку 7.
5 11 7 2
По циклу перемещаем поставку 9.
3 6 5 0
По циклу перемещаем поставку 5.
5 8 7 0
Последний план перевозок оптимален, так как все косвенные тарифы £ основных тарифов. Посчитаем минимальную стоимость перевозок товаров (д.е.).
Пример решения транспортной задачи средствами Excel
Рассмотрим решение транспортной задачи заданной таблицей
используя надстройку «Поиск решения» Excel.
На рабочем листе Excel вводим исходные данные в виде таблицы
Здесь в ячейках введены стоимости перевозок. Ячейки отведены под неизвестные значения объемов перевозок. В ячейках введены объемы поставок, а в ячейках объемы потребностей. В ячейку , вводится формула для целевой функции =СУММПРОИЗВ(A1:C2;A4:C5). В ячейки вводятся формулы: =СУММ(A4:A5); =СУММ(B4:B5): =СУММ(C4:C5) определяющие объемы потребностей. В ячейки введены формулы: =СУММ(A4:C4); =СУММ(A5:C5) характеризующие объемы поставок Запускаем команду «Поиск решения» и заполняем появившееся окно Поиск решения следующим образом. В поле «Оптимизировать целевую функцию» вводим ячейку . Выбираем оптимизации значения целевой ячейки «Минимум». В поле «Изменяя ячейки переменных» вводим изменяемые ячейки . В поле «В соответствии с ограничениями» вводим заданные ограничения с помощью кнопки «Добавить». $A$6:$C$6=$A$7:$C$7 $D$4:$D$5<=$E$4:$E$5. Ставим флажок в поле «Сделать переменные без ограничений неотрицательными». Выбрать метод решения «Поиск решения линейных задач симплекс-методом». Нажатием кнопки «Найти решение» запускается процесс решения задачи. В итоге появляется диалоговое окно «Результаты поиска решения» и исходная таблица с заполненными ячейками для значений переменных и оптимальным значением целевой функции.
Здесь в ячейках получаем план перевозок, а в ячейке минимальные затраты. Лекция 4. Сетевое планирование
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2021-12-15; просмотров: 116; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.137.209 (0.006 с.) |