Вікна та їх основні параметри 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вікна та їх основні параметри



В гармонійному аналізі вікна використовуються для зменшення небажаних ефектів просочування спектральних складових. Вікна впливають на можливість виявлення, роздільну здатність, динамічний діапазон, ступінь достовірності і легкість реалізованості обчислювальних операцій. Для порівняння характеристики вікон визначаються як їх основні параметри впливають на результати гармонійного аналізу.

Обмежений по смузі сигнал f(t) з перетворенням Фур’є F (ω) можна описати еквідістантною послідовністю відліків f (nT). Ця послідовність визначає періодично продовжений спектр NТ(ω) як його розкладання в ряд Фур’є.

Для машинної обробки в реальному масштабі часу послідовність даних повинна мати кінцеву тривалість, тому суму нескінченного ряду можна апроксимувати кінцевою сумою:

Рівняння (10.1) є перетворенням Фур’є; межі підсумовування тут вибрані задля зручностей, які дає парна симетрія. Рівняння (10.2) є перетворенням Фур’є з опущеною правою точкою, а (10.3) — ДПФ, тобто ряд відліків спектру (10.2). Бажано, щоб при опрацюванні реальних сигналів (для зручності застосування обчислювальних алгоритмів) індекси починалися з нуля. Цього можна добитися, зсовуючи початкову точку на N/2 точок вправо, тобто переходячи від (10.3) до (10.4). Рівняння (10.4) є прямим ДПФ. Оскільки, зсув індексу підсумовування на N/2 впливає лише на фазові кути перетворення, тому задля зручностей, обумовлених симетрією, будемо вважати, що всі вікна мають центр в початковій точці. Проте, треба пам'ятати, що ця зручність є основним джерелом неправильного застосування вікон. При обчисленні ДПФ за допомогою вікон зсув на N/2 точок і пов'язаний з ним фазовий зсув часто не враховують або враховують неправильно. Зокрема, це стається в тих випадках, коли множення на вагову функцію вікна в часовій області замінюється поєднанням спектру сигналу із спектром вікна.

Визначимо точність апроксимації суми нескінченного ряду рівнянням (10.2).

                                             (10.5)

Розглянемо вплив вікна на спектральні оцінки. З рівняння (10.5) видно, що перетворення Fw(ω) – це перетворення добутку, яке згідно з рівнянням (10.6) еквівалентне згортці двох перетворень:

                                                       (10.6)

Рівняння (10.6) є ключем до розуміння впливу кінцевої довжини послідовності даних на результати їх обробки. Інтерпретувати його можна двояко, але обидві інтерпретації еквівалентні. Легше всього пояснити це на конкретному прикладі. Візьмемо дискретне прямокутне вікно ω (nT)=1,0. Відомо, що W () це ядро Діріхле, що має вигляд:

                                                    (10.7)

Якщо не враховувати член, що характеризує лінійний фазовий зсув (який зміниться через зсув на N/2 точок, необхідного для реалізації обчислювального алгоритму), то один період цього перетворення буде мати форму, показану на рис 10.2

Рис 10.2. Ядро Діріхле для послідовності з N точок

Щодо формули (7.6) можна сказати, що величина Fw(ω) на заданій частоті ω (наприклад, ω = ω0)є сумою всіх спектральних гармонік, заздалегідь зважених спектральним вікном, з центром на частоті ωо (рис 10.3).

Рис 10.3.. Графічна Інтерпретація рівняння (6). Вікно представлене у вигляді спектрального фільтра,

Еквівалентна шумова смуга

З рис. 10.3 видно, що оцінка амплітуди гармонійної компоненти на заданій частоті виявляться зміщеною через наявність широкосмугового шуму, що потрапляє в смугу пропускання вікна. В цьому випадку вікно поводиться як фільтр, потужність сигналу на виході якого пропорційна потужності гармонік вхідного сигналу в смузі його пропускання. Для виявлення гармонійного сигналу необхідно мінімізувати накопичений шум. Цього можна досягти за допомогою вузько смугового вікна. Зручною мірою ширини смуги пропускання вікна є його еквівалентна шумова смуга (ЕШС). ЕШС вікна - це ширина смуги пропускання прямокутного фільтра з тим же максимальним посиленням його потужності, який накопичує ту ж потужність шуму, що і дане вікно (рис. 10.4).

Рис. 10.4. Еквівалентна шумова смуга вікна

  Накопичена вікном потужність шуму визначається виразом:

Потужність шуму рівна

                                                 (10.8)

де N0 - потужність шуму в одиничній смузі частот. Згідно теореми Парсеваля, величину (10.8) можна обчислити так:

                                                           (10.9)

Максимальне підсилення по потужності відповідає частоті ; воно називається посиленням по потужності на нульовій частоті і визначається виразами:

Оскільки максимальне підсилення сигналу W(0)= , максимальне посилення за потужністю W2(0) = , ЕШС вікна, нормована на величину N0/T- потужність шуму на бін (одиничний часовий інтервал), може бути записана у вигляді:

                                                           (10.10)

Підсилення і втрати перетворення

З ЕШС вікна тісно зв'язані поняття посилення перетворення (ПП) і втрат перетворення (ВП) при обчисленні ДПФ за допомогою вікон. Оскільки, ДПФ можна розглядати як результат пропускання сигналу через набір погоджених фільтрів, кожен з яких налаштований на одну з гармонік комплексної синусоїдальної послідовності базисної множини, можна проаналізувати підсилення перетворення (зване також когерентним підсиленням) фільтра і втрати перетворення, викликані тим, що вікно згладжує, тобто зводить до нуля, величини відліків, розташованих поблизу його меж. Хай вхідна послідовність відліків задана виразом:

                                                 (10.11)

Де  - послідовність відліків білого шуму з дисперсією . Тоді становляча сигналу в спектрі, обчисленому за допомогою вікна (тобто вихід погодженого фільтра), буде рівна:

 

              (10.12)

З (10.12) видно, що у відсутність шуму спектральна складова пропорційна вхідній амплітуді А. Таке ж буде і математичне очікування цієї складової за наявності шуму. Коефіцієнт пропорційності рівний сумі всіх відліків дискретного вікна, а ця сума є не що інше, як посилення вікна для постійного сигналу. Для прямокутного вікна цей коефіцієнт рівний N – числу відліків у вікні. Посилення будь-якого іншого вікна менше, оскільки вагова функція поблизу меж вікна плавно спадає до нуля. Зменшення коефіцієнта пропорційності характеризує помилку (зсув) оцінок амплітуд спектральних складових.

Некогерентна складова зваженого, тобто виконаного за допомогою вікна перетворення, обчислюється за формулою:

                                    (10.13)

а некогерентна потужність (середньоквадратичне значення цієї складової) визначається виразом:

   (10.14)

де Е{ } - оператор математичного очікування. Зауважимо, що некогерентне посилення за потужністю рівне сумі квадратів відліків вагової функції, а когерентне — квадрату суми цих відліків.

ПП визначається як частка відношення сигнал/шум на виході і на вході:

                          (10.15)

Тобто, ПП — це величина, зворотна нормованій ЕШС вікна.

Кореляція ділянок, що перекриваються

При використанні алгоритму ШПФ для обробки певної послідовності, цю послідовність заздалегідь ділять на декілька послідовностей по N відліків кожна, при цьому N вибирається так, щоб забезпечити необхідну спектральну роздільну здатність. Спектральна роздільна здатність ШПФ визначається формулою (10.16), де - спектральна роздільна здатність, fs – частота дискретизації, вибрана за критерієм Найквіста, і β - коефіцієнт, що характеризує збільшення ширини смуги для вибраного вікна. Відзначимо, що  - це якнайкраща роздільна здатність, досяжна при ШПФ. Коефіцієнт β звичайно вибирається рівним ЕШС вікна в бінах.

                                                             (10.16)

Якщо вікно і ШПФ впливають на ділянки послідовності (рис. 7.4), що не перекриваються, то значна частина даних просто ігнорується, оскільки поблизу меж вікна значення його відліків близькі до нуля. Так, наприклад, якщо перетворення використовується для виявлення коротких вузькополосних сигналів, то при аналізі ділянок, що не перекриваються, поява сигналу може виявитися просто непоміченою. Для цього достатньо, щоб сигнал з'явився поблизу межі будь-якого з інтервалів. Щоб уникнути таких втрат даних, перетворенню звичайно піддають ділянки послідовності, що перекриваються (див. рис. 10.5). Ступінь перекриття в більшості випадків вибирається рівній 50 або 75%. Розбиття сигналу на ділянки, що перекриваються, звичайно, збільшує загальний об'єм обчислень, проте результати, що досягаються з його допомогою, цілком це виправдовують.

Рис 10.5. Розбиття послідовностей на інтервали, що перекриваються та не перекриваються.

Паразитна амплітудна модуляція спектру

Важливим чинником, що впливає на виявлення слабих сигналів, є паразитна амплітудна модуляція спектру (scalloping loss), або ефект ''частоколу" (picket-fence effect). Раніше розглядалось виконуване за допомогою вікна ДПФ як результат пропускання сигналу через набір погоджених фільтрів і аналізували обумовлені специфічними властивостями вікна підсилення і втрати для тонів, співпадаючих з базисними векторами. Базисні вектори – це частоти, кратні частоті fs /N, де fs – частота відліків. Ці частоти не що інше, як точки відліків спектру, їх звичайно називають точками виходів, частотами гармонік або бінами ДПФ. Визначимо, які будуть додаткові втрати при опрацюванні сигналу, частота якого лежить посередині між частотами сусідніх бінів (тобто сигналу з частотою (k+1/2)fs/N)?

В (10.12) замінивши ωк на ωк+1/2 одержуємо, що підсилення вікна для частоти, зсунутої на 0.5 біна, рівне:

                           (10.17)

Максимальні втрати перетворення

Максимальні втрати перетворення (ВП) можна визначити як суму максимальних втрат через паразитну AM спектру для даного вікна (в дБ) і втрат перетворення, обумовлених формою цього вікна. Введений параметр характеризує зменшення співвідношення виходу сигнал/шум в результаті дії вікна при якнайгіршому розташуванні частоти сигналу. Його величина впливає на мінімальну інтенсивність частоти при якій вона ще може бути знайдена в широкосмуговому шумі. Рівень максимальних втрат лежить між 3.0 і 4.3 дБ. Вікна, для яких максимальні ВП перевищують 3.8 дБ, абсолютно незадовільні і їх не слід застосовувати.

Мінімальна допустима смуга частот

На рис.10.6 наведений ще один критерій, який повинен використовуватися при виборі оптимальних вікон. Оскільки вікно додає спектральній лінії деяку ефективну ширину, треба знати, при якій мінімальній відстані між двома спектральними лініями рівної інтенсивності головні пелюстки цих ліній ще можуть бути розділені незалежно від положення ліній щодо бінів ДПФ. Класичний критерій такого розділу – ширина вікна між точками, в яких потужність головного пелюстка спадає наполовину (ширина вікна по рівню 3.0 дБ). Цей критерій відображає той факт, що два головні пелюстки рівної інтенсивності, віддалені один від одного по частоті менш ніж на ширину вікна по рівню 3.0 дБ, будуть мати один загальний спектральний пік і не будуть розділятися як дві окремі лінії.

Рис. 10.6. Спектральний дозвіл двох близько розташованих ядер.

Проте цей критерій несумісний з когерентним підсумовуванням, використовуваним в ДПФ.

Якщо в когерентне підсумовування вносять внесок двоє ядер, їх сума в точці перетину (номінально посередині між ними) повинна бути менше ніж індивідуальні найвищі точки, якщо ці найвищі точки розділені. Таким чином, в точках перетину ядер посилення від кожного ядра повинне перевищувати 0.5, тобто відстань між списами повинна перевищувати ширину вікна по рівню 6.0 дБ.

Класичні вікна

Всі наведені вікна представляються як парні (щодо початку координат) і містять непарну кількість точок. Для перетворення вікна в ДПФ-парне вікно достатньо відкинути крайню праву точку і зсунути послідовність так, щоб крайня ліва точка співпала з початком координат. Ми будемо використовувати нормовані координати з періодом дискретизації Т=1.0, так що ω0 буде мати період 2π/N і надалі позначатися через θ. Біном ДПФ будемо називати відстань між відліками, кратними 2π/N. Бін має ширину 2π/N.

Прямокутне вікно (вікно Діріхле)

Прямокутне вікно у всьому інтервалі спостереження рівне одиниці. Таке вікно можна розглядати як виділяючу, або стробуючу послідовність, що впливає на вхідну послідовність для виділення з неї кінцевої ділянки. Вікно для кінцевого перетворення Фур'є, що наведено на рис.7.6, визначається як

w(n)=l,0;                                         (10.18)

Те ж саме вікно для ДПФ визначається як

w(n)=l,0;                                          (10.19)

Спектральне вікно, відповідне прямокутному вікну для ДПФ, дається виразом

                                                             (10.20)

Видно, що перетворення цього вікна є ядром Діріхле шириною головного пелюстка ДПФ (між перетинами нуля) 2 біна та рівнем перших бічних пелюстків приблизно на 13 дБ нижче за пік головної пелюстки. Швидкість спаду бічних пелюсток складає 6.0 дБ/октава, що цілком прийнятне для вагової функція з розривами.

Рис 10.7. Прямокутне вікно (а) і логарифм амплітуди його перетворення Фур'є (b).

Тепер, коли дано визначення прямокутного вікна, можна відповісти на поставлене раніше питання: в якому сенсі кінцева сума (10.21) апроксимує нескінченну суму (10.22)

                                                (10.21)

                                                   (10.22)

Звідси можна зробити висновок, що кінцева сума – це нескінченна сума, помножена на прямокутну вагову функцію. Нескінченна сума – це розкладання в ряд Фур'є деякої періодичної функції, a f(n) – коефіцієнти цього розкладання. Відзначимо, до речі, і та обставина, що кінцева сума – це просто часткова сума ряду Фур'є.

Трикутне вікно (вікно Фейера і Бартлетта)

Трикутне вікно для кінцевого перетворення Фур'є, що наведене на рис.10.8 визначається виразом

                                (10.23)

Це вікно для ДПФ записується як

                                    (10.24)

Рис. 10.8. Трикутне вікно (а) і логарифм амплітуди його перетворення Фур'є 8(b).

Спектральне вікно, відповідне ДПФ - послідовності, дається формулою

                                                 (10.25)

Видно, що перетворення цього вікна є квадратом ядра Діріхле. Ширина його головного пелюстка (між перетинами нуля) удвічі більш ніж в прямокутного вікна, а рівень перших бічних пелюсток рівний приблизно —26 дБ, тобто теж приблизно удвічі нижчий, ніж в прямокутного вікна. Рівень бічних пелюстків спадає із швидкістю 12 дБ/октава, оскільки розривна не сама вагова функція, а тільки її перша похідна. Трикутник – це найпростіше вікно, що має ненегативне перетворення. Такою властивістю володіють всі вікна, отримані шляхом згортки будь-якого вікна (половинної протяжності) з самим собою. Перетворення такого вікна рівно квадрату перетворення початкового вікна.

Вікно, отримане шляхом згортки з початковим вікном, містить приблизно удвічі більше відліків, ніж початкове, і, отже, відповідає тригонометричному поліному (за Z-перетворенням) приблизно удвічі більш високого порядку. (Згортка двох прямокутників по N/2 точок в кожному дасть трикутник з N+1 точок, якщо рахувати нульові точки на кінцях.) Тепер перетворення вікна буде мати удвічі більше нулів, ніж початкове перетворення (це пояснюється збільшенням порядку приєднаного тригонометричного полінома). Перетворення вікна, шляхом згортки з самим собою, просто має кратні нулі в кожній з точок, відповідних нулям початкового перетворення. Завдяки кратності нулів в нуль в цих точках звертається, звичайно, і перша похідна перетворення. Проте, якщо порядок полінома збільшують для зниження рівня бічних пелюсток, подвоєння числа нулів не принесе успіху.

Щоб понизити рівень бічних пелюстків, додаткові нулі слід було б помістити в проміжках між існуючими нулями (поблизу локальних піків бічних пелюсток), а не в тих точках, де перетворення і так рівно нулю.

Вікна виду cosα (X)

Це ціле сімейство вікон, залежних від параметра а, причому а, як правило, ціле число. Привабливість цього сімейства пояснюється легкістю обчислення значень відліків вікна і простотою аналізу властивостей перетворення косинусної функції. Ці якості особливо зручні для ДПФ. Вікно для кінцевого перетворення Фур’є визначається виразом

                                                 (10.26)

а для ДПФ – виразом

                                                       (10.27)

 

В якості α найчастіше вибирають цілі числа від 1 до 4. Найчастіше використовують вікно з α=2 (вікно Хеннінга). Вікна для (α = 1 і 2 даються наступними формулами (для кінцевого перетворення формули з індексом „а", для ДПФ -з індексом "b"):

α =1.0 (косинусоїдальний пелюсток)

                          (10.28)

α=1.0 (синусоїдальний пелюсток)

                                  (10.29)

α=2.0 (косинус квадрат, підведена косинусоїда, вікно Хеннінга)

                 (10.30)

α =2.0 (синус квадрат, підведена синусоїда, вікно Хеннінга)

                      (10.31)

Зауважимо, що із зростанням α вікна стають більш гладкими, що відображається і на перетворенні — зменшується рівень бічних пелюстків і швидшає їх спад, зате збільшується ширина головного пелюстка.

Рис. 10.9. Вікно cos4 (пπ/N) (а) і логарифм амплітуди його перетворення Фур’є (b)

Вікна сімейства Гауса (Вейерштрасса) є гладкими функціями, перетворення Фур'є яких має високі вузькі головні пелюстки. Згідно узагальненому принципу невизначеності, не можна одночасно "стиснути" сигнал і його перетворення Фур'є. Якщо мірою стиснення є середньоквадратична часова тривалість Т і середньоквадратична смуга частот W, то, як відомо, для будь-якої функції виконується нерівність

                                                                  (10.33)

Рівність досягається тільки для імпульсу з гаусовою огинаючою. Такий імпульс характеризується мінімальним добутком тривалості на смугу частот і тому досить привабливий для використовування в якості вікна. На жаль, при цьому ми вимушені обрізувати "хвости" гаусовою кривою, тим самим обмежуючи часову тривалість імпульсу. В результаті його спектр розпливається, і добуток тривалості на смугу частот перестає бути мінімальним. Проте, якщо точка усікання лежить за точкою 3σ, помилки усікання малі, і таке вікно є доброю апроксимацією вікна з мінімальним добутком тривалості на смугу частот.

Доцільно знайти такі вікна, які при заданій кінцевій тривалості будуть мати мінімальну ширину смуги. Аналогічна задачу розв’язується при проектуванні антен. Вон полягає у виборі такого розподілу поля в антені кінцевої апертури, які дозволило б якомога більше звузити головну пелюстка діаграми спрямованості, одночасно не допускаючи зростання бічних пелюстків. Рішення, що забезпечує мінімальну ширину головного пелюстка при заданому рівні бічних пелюсток, отримано в замкнутій формі. Воно є вікном (функцію затінення) Дольфа-Чебишева. Безперервне рішення цієї задачі має викиди на межах і тому в безперервних вікнах може бути реалізоване лише приблизно (за допомогою розкладання в ряд Тейлора). Дискретні вікна не мають подібних обмежень, для них можлива точна реалізація рішення.

Співвідношення Tn(X)=cos(θ) задає відображення безлічі поліномів Чебишева n-го алгебраїчного порядку на безліч тригонометричних поліномів того ж порядку. За допомогою цього відображення можна отримати наступний вираз для вікна Дольфа-Чебишева, визначений через значення еквідістантних відліків перетворення Фур'є вікна;

 

                                               (10.34)

                                                

Щоб обчислити відповідні часові відліки вікна ω(n), потрібно просто застосувати до відліків W(k) ДПФ, а потім нормувати їх щодо максимальної амплітуди. Параметр α, характеризує собою логарифм відносини максимуму головної пелюстки до рівня бічних пелюстків. Так α=3.0 відповідає бічним пелюсткам на 3.0 декади (або на 60 дБ) нижчим за головний пелюсток. Множник (-1)x, що змінює знаки послідовних відліків перетворення, введений для обліку зсуву початкової точки в часовій області.

Гармонійний аналіз

Проаналізуємо вплив властивостей вікна на ефективність виявлення слабої спектральної лінії у присутності інтенсивної близько розташованої лінії. Якщо обидві спектральні лінії потрапляють в біни ДПФ, то кожна з них окремо може бути ідентифікована за допомогою прямокутного вікна. Ніяких взаємних перешкод при цьому не виникає. Щоб показати це розглянемо сигнал, що має дві спектральні складові з частотами 10 fs /N i 16 fs /N, що відповідають десятому і шістнадцятому бінам ДПФ, із амплітудами 1.0 і 0.01 (різниця рівнів 40 дБ).

Дещо змінимо наш сигнал так, щоб більш інтенсивна спектральна лінія потрапила між двома бінами ДПФ, тобто буде тепер мати частоту 10.5 fs/N. Тоді структура бічних пелюстків повністю поглине головний пелюсток слабкого сигналу. Це і не дивно, оскільки відомо, що при використанні прямокутного вікна амплітуда бічних пелюстків на відстані 5.5 бін від центру всього на 25 дБ нижче точки максимуму. Тому другий сигнал (на відстані 5.5 бін від першого) не можна розпізнати, оскільки він більш ніж на 26 дБ нижчий найвищої точки, і, відповідно, повністю замаскований бічним пелюстком (26 дБ складаються з рівня бічного пелюстка, рівного 25 дБ за мінусом втрат при перетворенні, рівних 3.9 дБ плюс 3.0 дБ для надійного розпізнання). Відмітимо також асиметричність спектру відносно головної пелюстки з центром на 10.5 бін. Це результат когерентного підсумовування пелюстків пари ядер, які знаходяться на частотах ±10.5 бін.

Тепер для розпізнання слабкого сигналу застосуємо інші вікна і подивимось, наскільки вони ефективні.

Для деяких видів вікон найгірший прояв сигналів спостерігається у тому випадку, коли найбільший сигнал має частоту 10.0, а не 10.5 бін.

Отже, ми розглянули ряд класичних вікон і ряд вікон, сконструйованих відповідно з деякими критеріями оптимальності. Зокрема, була досліджена ефективність різних вікон при рішенні задач виділення тонів з широкосмугового шуму і розпізнавання тонів в присутності близьких по частоті завад більшої інтенсивності. Було показано, що при використанні ДПФ в якості детектора енергії гармонік максимальні втрати, обумовлені використанням вікон, не можуть бути нижчі 3.0 дБ і для хороших вікон не перевищують 3.75 дБ. Таким чином, вибір конкретного вікна не відіграє суттєвої ролі при зміні енергії спектральних гармонік з допомогою ДПФ. Ми дійшли висновку, що адекватним показником якості вікна є різниця між еквівалентною шумовою смугою і смугою по рівню 3.0 дБ, нормована на ширину смуги по рівню 3.0 дБ. У хороших вікон (див. рис. 12) це відношення знаходиться в межах від 4.0 до 5.5%. Повний діапазон можливих змін цього параметра для вікон, перерахований в табл.1, складає від 3.2 до 22.9%.

Правильний вибір вікна особливо важливий для розпізнання з допомогою ДПФ окремих тонів в сигналі, що містить декілька гармонік. Для того, щоб динамічний діапазон розпізнаних сигналів був максимальний, перетворення вікна повинно мати вузький головний пелюсток і дуже низький рівень бічних пелюстків. Ми показали, що більшість класичних вікон різною мірою відповідають цьому критерію, хоча деякі з них, по суті, зовсім незадовільні Виявилось що при розпізнанні близьких, але відмінних по амплітуді тонів найкращі результати досягаються при використанні оптимальних вікон (Кайзера-Бесселя, Дольфа-Чебишева, Барсилона-Темеша), а також вікон Блекмана-Херріса. Для одного й того ж динамічного діапазону розпізнаних сигналів характеристики трьох оптимальних вікон і вікна Блекмана-Херріса в цілому схожі, проте вікна Блекмана-Херріса і Кайзера-Бесселя мають деякі переваги над іншими. Відмітимо, що кращим слід назвати вікно Дольфа-Чебишева, однак через когерентне підсумовування його бічних пелюстків, які мають постійний рівень, воно не підтверджує свої високі характеристики при розпізнанні декількох сигналів різної частоти. Крім того, структура бічних пелюстків вікна Дольфа-Чебишева надто чутлива до помилок при обрахунку коефіцієнтів, що може вплинути на його характеристики при обрахунку ДПФ на ЕОМ, працюючих з фіксованою комою. Тому, кращими слід визнати вікна Блекмана-Херріса та Кайзера-Бесселя. Для багатьох практичних прикладів можна рекомендувати 4-членне вікно Блекмана-Херріса, воно задається малою кількістю легко обчислювальних коефіцієнтів, та можливістю застосування при виконанні спектрального згортання після обрахунку ДПФ. Серед причин вибору вікна Кайзера-Бесселя – легкість обрахунку коефіцієнтів і можливість зменшення рівнобічних пелюсток за рахунок збільшення добутку тривалості на смугу частот.

Особливу увагу в роботі було приділено на постійну помилку при використанні вікон для спектральної згортки. Ця помилка полягає в пропущенні почергових знаків підрахунків спектрального вікна. Поява цих знаків пов'язана із зсувом початку вікна в часових проміжках.

Ми також вияснили і пояснили джерело помилкових суджень щодо парності вікон, які використовуються при ДПФ.

Нарешті, слід відмітити, що всі висновки про характеристики вікон при спектральному аналізі можна розповсюдити на випадок застосування функцій затінення при опрацюванні просторово дискретизованих даних з допомогою антенних решіток, в тому числі і на задачу формування вузької діаграми направленості методом ШПФ.



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 49; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.21.5 (0.08 с.)