Окрестностью т-ки х наз-ся любой интервал содержащий т-ку х, необязательно симметричную. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Окрестностью т-ки х наз-ся любой интервал содержащий т-ку х, необязательно симметричную.



^ 2. Грани числовых мн-в

Пусть Х – непустое мн-во веществ. чисел.

Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство с³х(х³с). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым

Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во.

Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено.

^ Точные грани числовых мн-в

Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х*, то оно min мн-ва Х

Пример Х=[0,1) то max[0,1) не $. min [0,1)=0

Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва.

Верхн. грань – supX=x*, а нижн. грань infX=x*

Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.

Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. чисел.

^ 3. Числовые последовательности

Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, …,хn, … наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти.

!Порядок следования эл-тов оч. важен, перестановка хотя бы 2-х эл-тов приводит к др. посл-ти.

Основные способы задан. посл-ти:

а) явный, когда предъявляется ф-ла позволяющая по заданному n вычислить любой эл-т n, т.е. xn=f(n), где f- некоторая ф-ция нат. эл-та.

б) неявный, при котором задается некоторое рекуррентное отношение и несколько первых членов посл-ти.

Пример:

а) xn=5n x1=5, x2=10

б) x1=-2 xn=4n-1 –3, n=2,3… х2=-11, х3=-47
^ Ограниченные последовательности(ОП)

Посл-ть {xn} наз-ся огран. сверху(снизу), если найдется какое-нибудь число {xn} M(m) xn£M "n (xn³m "n) посл-ть наз-ся огранич., если она огранич. сверху и снизу.

Посл-ть {xn} наз-ся неогранич., если для любого полного числа А сущ-ет эл-т хn этой посл-ти, удовлетворяющий неравенству ½xn½>А.
^ Сходящиеся и расходящиеся посл-ти

Св-ва сходящихся посл-тей

Теорема “Об единственности пределов”

Теорема “Сходящаяся посл-ть ограничена”

Теорема “О сходимости монотон. посл-ти”

^ 4. Сходящиеся и расходящиеся посл-ти

Большое внимание уд-ся выяснению вопроса: обладает ли данная посл-ть сл-щим св-вом (сходимости) при неогранич. Возрастании номеров посл-ти эл-ты посл-ти сколь угодно близко приближаются к некоторому числу а или же этого св-ва нет.

Опр Если для любого e >0 найдется такой номер N, для любого n >N:½xn-a½< e

Все посл-ти имеющие предел наз-ся сходящимися, а не имеющее его наз-ся расходящимися.
Связь сходящихся посл-тей и б/м.

Дает сл. теорему

Теорема Для того чтобы посл-ть xn имела пределом число а необходимо, чтобы эл-ты этой посл-ти можно было представить в виде xn=a+an, где посл-ть {an}®0, т.е. является б/м.

Док-во

а) Допустим, что xn®a и укажем посл-ть an удовл. равенству xn=a+an. Для этого просто положим an=xn-a, тогда при n®¥½xn-a½ равно растоянию от xn до а ® 0 => an б/м и из равенства преобразования определяю an получаем xn=a+an.
^ Свойство б/м

Если {xn},{yn}- любые посл-ти, то их сумма {xn+yn}, это есть пос-ть с общим членом xn+yn. Аналогично с разностью, частным и умножением.

Т-ма о св-вах б/м

а) {xn}и{yn}-б/м пос-ти, б/м

1) их сумма, разность и произведение являются б/м

2) Произведение любой огранич. посл-ти на б/м являются б/м

!О частном не говорят, т.е. частное б/м может не быть б/м.

Посл-ть {xn} явл. б/б, если для любого числа с>0 сущ-ет номер N для всех номеров n>N ½xn½>c.

!Понятие б/б не совпадает с неограниченной: посл-ть может быть неогранич., но не является б/б.

Пример 1,1/2,3,1/4,5,1/6,7… явл. неогранич., т.е. принимает сколь угодно большие по модулю значения, однако в ней имеются эл-ты со сколь угодно большими номерами принимающие дробные знач. и сколь угодно малые по модулю.
^ Св-ва сходящихся посл-тей

Теорема “Об единственности пределов”

Если посл-ть xn сходится, то она имеет единственный предел.

Док-во (от противного)

{xn} имеет два разл. Предела a и b, а¹b. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса e= (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.

Теорема “Сходящаяся посл-ть ограничена”

Пусть посл-ть {xn}®а e >о N:"n>N½xn-a½<e эквивалентна а-e<xn<a+e "n>N => что каждый из членов посл-ти удовлетворяет неравенству½xn½£ c = max {½a-e½,½a+e½,½xn½,…,½xn-1½}

Теорема “Об арифметических дейсьвиях”

Пусть посл-ть {xn}®a,{yn}®b тогда арифметические операции с этими посл-тями приводят к посл-тям также имеющие пределы, причем:

а) предел lim(n®¥)(xn±yn)=a±b

б) предел lim(n®¥)(xn*yn)=a*b

в) предел lim(n®¥)(xn/yn)=a/b, b¹0

Док-во:

а)xn±yn=(а+an)±(b+bn)=(a±b)+(an±bn) Правая часть полученная в разности представляет сумму числа a+b б/м посл-тью, поэтому стоящая в левой части xn+yn имеет предел равный a±b. Аналогично др. св-ва.

б) xn*yn=(а+an)*(b+bn)=ab+anb+abn+anbn

an*b – это произведение const на б/м

а*bn®0, anbn®0, как произведение б/м.

=> поэтому в правой части стоит сумма числа а*b+ б/м посл-ть. По т-ме О связи сходящихся посл-тей в б/м посл-ти в правой части xn*yn сводится к a*b

Практический вывод состоит в том, что нахожд. пределов посл-тей заданных сл. выражениями можно сводить к более простым задачам вычисления lim от составляющих этого выр-ния

Посл-ть {xn} наз-ся возр., если x1<…<xn<xn+1<…;

неубывающей, если x1£x2£…£xn£xn+1£…; убывающей, если x1>x2>…>xn>xn+1>…; невозр., если x1³x2³…³xn³xn+1³…

Все такие посл-ти наз-ся монотонными. Возр. и убыв. наз-ся строго монотонными

Монотонные посл-ти ограничены с одной стороны, по крайней мере. Неубывающие ограничены снизу, например 1 членом, а не возрастыющие ограничены сверху.

Теорема “О сходимости монотон. посл-ти”

Всякая монотонная посл-ть явл-ся сходящейся, т.е. имеет пределы.

Док-во Пусть посл-ть {xn} монотонно возр. и ограничена сверху. X – все мн-во чисел которое принимает эл-т этой посл-ти согласно усл. Теоремы это мн-во огранич., поэтому по соотв. Теореме оно имеет конечную точную верх. грань supX xn®supX (обозначим supX через х*). Т.к. х* точная верх. грань, то xn£x* " n. " e >0 вып-ся нер-во $ xm(пусть m- это n с крышкой):xm>x*-e при " n>m => из указанных 2-х неравенств получаем второе неравенство x*-e£xn£x*+e при n>m эквивалентно ½xn-x*½<e при n>m. Это означает, что x* явл. пределом посл-ти.
Экспонента или число е

Ф-ции одной переменной

Обратные ф-ции

^ 6. Экспонента или число е

Р-рим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1). Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128…



Поделиться:


Последнее изменение этой страницы: 2021-12-10; просмотров: 26; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.135.63 (0.013 с.)