Влияние нагрева на структуру и свойства деформированного металла. Рекристаллизация. Холодная и горячая пластическая деформация.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Влияние нагрева на структуру и свойства деформированного металла. Рекристаллизация. Холодная и горячая пластическая деформация.



19.1.2. Процессы, происходящие при нагреве, подразделяют на две основные стадии: возврат и рекристаллизацию; обе ста­дии сопровождаются выделением теп­лоты и уменьшением свободной энер­гии. Возврат происходит при относи­тельно низких температурах (ниже 0,3 Тпл.), рекристаллизация - при более высоких.
Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микро­структуры деформированного металла, т. е. размер и форма зерен при возврате не изменяются.
Рекристаллизацией называют зарож­дение и рост новых зерен с меньшим количеством дефектов строения; в ре­зультате рекристаллизации образуются совершенно новые, чаще всего рав­ноосные кристаллы.
Существует также температура рекри­сталлизации; это наименьшая темпера­тура нагрева, обеспечивающая возмож­ность зарождения новых зерен. Темпе­ратура рекристаллизации составляет не­которую долю от температуры плавле­ния металла: Tрекр. =0,4Tпл. Для алюминия, меди и же­леза технической чистоты темпера­турный порог рекристаллизации равен соответственно 100. 270 и 450 °С.

Схема изменения микроструктуры наклепанного металла при нагреве: а - наклепанный металл; б - начало первичной рекристаллизации; в - завершение первичной рекристаллизации; г, д - стадии собирательной рекристаллизации
Зарождение новых зерен при рекри­сталлизации происходит в участках с наибольшей плотностью дислокаций, обычно на границах деформированных зерен. Чем выше степень пластической деформации, тем больше возникает цен­тров рекристаллизации. Они представляют собой субмикроскопические области с минимальным количеством точечных и линейных дефектов строе­ния. Эти области возникают путем перераспределения и частичного уничто­жения дислокаций; при этом между цен­тром рекристаллизации и деформиро­ванной основой появляется высокоугло­вая граница.
С течением времени образовавшиеся центры новых зерен увеличиваются в размерах вследствие перехода атомов от деформированного окружения к бо­лее совершенной решетке; при этом большеугловые границы новых зерен перемещаются в глубь наклепанного металла.

Схемы изменения твердости (а) и пластичности (6) наклепанного металла при нагреве: I - возврат; II - первичная рекристаллизация; III - рост зерна


Рассмотренная стадия рекристаллиза­ции называется первичной рекристалли­зацией или рекристаллизацией обработ­ки. Первичная рекристаллизация закан­чивается при полном замещении новы­ми зернами всего объема деформирован­ного металла.
По завершении первичной рекристал­лизации происходит рост образовав­шихся зерен при увеличении выдержки или температуры; эта стадия рекристал­лизации называется собирательной ре­кристаллизацией. Этот процесс само­произвольно развивается при достаточ­но высоких температурах в связи с тем, что укрупнение зерен приводит к уменьшению свободной энергии металла из-за уменьшения поверхностной энергии.
Рост зерен происходит в результате перехода атомов от одного зерна к со­седнему через границу раздела; одни зерна при этом постепенно уменьшают­ся в размерах и затем исчезают, а дру­гие становятся более крупными, погло­щая соседние зерна. С повышением температуры рост зерен ускоряется. Чем выше температура нагрева, тем более крупными окажутся рекристаллизованные зерна. Первичная рекристаллизация пол­ностью снимает наклеп, созданный при пластической деформации; металл при­обретает равновесную структуру с ми­нимальным количеством дефектов кри­сталлического строения. Свойства ме­талла после рекристаллизации близки к свойствам отожженного металла.

19.3. В зависимости от соотношения температуры деформации и температуры рекристаллизации различают холодную и горячую деформации. Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.

Деформацию называют горячей, если ее проводят при температуре выше температуры рекристаллизации для получения пол­ностью рекристаллизованной структуры.

При этих температурах деформация также вызывает упрочнение «горячий наклеп», которое полностью или частично снимается рекристаллизацией, протекающей при температурах обработки и при последующем охлаждении. В отличие от статической полигонизации и рекристаллизации, процессыполигонизации и рекристаллизации, происходящие в период деформации, называют динамическими.

При горячей обработке давлением (прокатке, прессовании, ковке, штамповке и т. д.) упрочнение в результате наклепа (повышение плотности дислокаций) непосредственно в процессе деформации непрерывно чередуется с процессом разупрочнения (уменьшением плотности дислокаций) при динамической полигонизации и рекристаллизации во время деформации и охлаждения. В этом основное отличие динамической полигонизации и рекристаллизации от статической.

Горячую деформацию в зависимости от состава сплава и скорости деформации обычно проводят при температурах (0,7-0,75) Тпл.

Когда металл после деформации имеет частично рекристаллизованную рекристаллизованную структуру, то такую обработку правильнее называть неполной горячей, или теплой, деформацией.

20. Стандартные механические свойства и методы их определения.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Широкое распространение объясняется тем, что не требуются специальные образцы.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рис. 7.1.

Рис. 7.1. Схемы определения твердости:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.232.99 (0.022 с.)