Стали для измерительного инструмента, штамповые стали для деформирования металлов в холодном и горячем состоянии.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Стали для измерительного инструмента, штамповые стали для деформирования металлов в холодном и горячем состоянии.



Стали для измерительного инструмента должны обладать высокой твердостью, износостойкостью, небольшим коэффициентом теплового расширения и сохранять постоянство размеров и формы в течение длительного срока службы. Обычно применяют высокоуглеродистые (заэвтектоидные низколегированные) хромистые стали X (1,0–1,1% С и 1,3–1,6% Сr), ХГ (1,3–1,5% С, 0,45–0,7% Мn, 1,3–1,6% Сr), ХВГ, 9ХС. Измерительный инструмент из стали X и ХГ проходит закалку с возможно более низкой температуры, обычно 840–850° С, для получения минимального количества остаточного аустенита. В закаленной высокоуглеродистой стали при нормальной комнатной температуре в течение длительного времени самопроизвольно протекает процесс старения, который заключается в частичном распаде мартенсита и превращении некоторого количества остаточного аустенита в мартенсит. Старение вызывает небольшое изменение объема в линейных размерах изделия, недопустимое для измерительных инструментов высоких классов точности. Для предупреждения старения измерительные инструменты продолжительное время (12–60 ч) подвергают отпуску при температуре 120–140°С. Твердость после указанной обработки составляет HRC 62–64. Иногда после закалки производят обработку холодом при температуре -50¸-80°С для более полного превращения остаточного аустенита. Измерительные скобы, шайбы, линейки и другие плоские и длинные инструменты изготовляют из листовой стали марок 15, 15Х, 20Х, 12ХН3А и для получения рабочей поверхности с высокой твердостью и износостойкостью подвергают цементации (стали 15, 20) и закалке; поверхностной закалке ТВЧ – стали 50, 55; для крупного инструмента сложной формы применяют азотируемую сталь 35ХМЮА.

Штамповые стали для деформирования в холодном состоянии Стали, предназначенные для штампов холодной пластической деформации, должны обладать высокой твердостью, износостойкостью и прочностью, сочетающейся с достаточной вязкостью, пластичностью. В процессе деформирования с большей скоростью штампы разогреваются до температуры 200–450°С. Поэтому стали должны быть теплостойкими и иметь минимальные объёмные изменения при закалке. При крупных штампах необходимо обеспечить высокую прокаливаемость и небольшие объемные изменения при закалке. Если в процессе термической обработки произойдет искажение сложной фигуры штампа, то необходимо будет производить доводку штампа до требуемых размеров. Наиболее часто применяют стали, состав которых и термическая обработка приведены в табл. 1. Таблица №1 Низколегированные стали X, 9ХС, ХВГ, ХВСГ также как и углеродистые У10, У11, У12 используют преимущественно для вытяжных, высадочных, обрезных и обрубных штампов, высадочных пуансонов которые из-за несквозной прокаливаемости имеют твердый износостойкий слой и вязкую сердцевину, позволяющую работать при небольших ударных нагрузках. Вытяжные штампы, подвергающиеся интенсивному износу без динамических нагрузок (после неполной закалки отпускают при 150–180°С) имеют твердость HRC 58–61. Высадочные штампы и пуансоны, работающие с ударными нагрузками (подвергают отпуску при 275–325° С) имеют твердость HRC 54–56 в рабочей части. Высокохромистые стали Х12Ф1 и Х12М относятся по структуре к ледебуритному классу (после отжига) и мартенситному (после нормализации), содержат 16–17% карбидов (Cr, Fe)7C3. Стали предназначаются для массивных штампов сложной формы, накатных роликов, валков, глазков для калибрования, вырубных, обрезных, чеканочных штампов повышенной точности, штампов выдавливания, калибровочных волочильных досок и т.д. Стали обладают высокой износостойкостью и при закалке в масле мало деформируются, что важно для штампов сложной формы. Стали закаливаются на первичную и вторичную твердость. Закалка на вторичную твердость производится с высоких температур (1110–1170°С), что приводит к сильному легированию аустенита хромом вследствие растворения карбида (Fe, Cr)7C3 и резкому снижению мартенситной точки. После закалки в структуре стали содержится до 60–80% остаточного аустенита и твердость составляет HRC 42–54. После многократного отпуска при температуре 500–580° С аустенит превращается в мартенсит и твердость возрастает до HRC 60–62. Такая обработка повышает теплостойкость, но снижает механические свойства и применяется только для небольших штампов, не испытывающих высоких нагрузок и разогревающихся при работе до высоких температур. Молибден и ванадий в сталях Х12Ф1 и Х12М способствует сохранению мелкого зерна. Обе стали обладают высокой прокаливаемостью. При закалке на первичную твердость сталь Х12Ф1 прокаливается до 150–180 мм, а сталь Х12М – до 200 мм при охлаждении в масле. Недостаток высокохромистых сталей заключается в трудности обработки резанием в отожженном состоянии (НВ 207–269) и снижении механических свойств в случае резко выраженной карбидной неоднородности (крупные скопления карбидов, карбидная сетка, карбидная полосчатость). Меньшей карбидной неоднородностью обладает сталь Х6ВФ, которая применяется для инструментов с высокой механической прочностью и сопротивлением изнашиванию (накатные плашки, накатники для холодного накатывания зубчатых колес и т.д.). Прокаливаемость стали Х6ВФ меньше и не превышает 70–80 мм. Для изготовления штампов сложной формы, пневматического инструмента, гибочных и вытяжных штампов, ножей для резания металлов, пуансонов и обжимных матриц, зубил и другого инструмента, испытывающего в работе ударные нагрузки, применяют доэвтектоидные стали 4ХВ2С, 5ХВ2С, 6ХВ2С, а также 4ХС и 6ХС, содержащие 1,0–1,6% Сr и 0,6–1,6% Si. Высокая вязкость сталей достигается низким содержанием в них углерода и более высоким отпуском после закалки. 5. Штамповые стали для деформирования в горячем состоянии (полутеплостойкие и теплостойкие) Стали для штампов, деформирующих металл в горячем состоянии (ударное нагружение), должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать окалиностойкостью и разгаростойкостью, т.е. способностью выдерживать многократные нагревы и охлаждения без образования сетки трещин (сетки разгара). Под разгаростойкостью понимают устойчивость к образованию сетки поверхностных трещин, вызываемых объемными изменениями в поверхностном слое при резкой смене температур. Это свойство обеспечивается снижением содержания углерода в стали для повышения пластичности, вязкости, а также теплопроводности, уменьшающей разогрев поверхностного слоя и термические напряжения в нем. Кроме того, стали должны иметь высокую износостойкость и теплопроводность для лучшего отвода тепла, передаваемого обрабатываемой заготовкой. Многие штампы имеют большие размеры, поэтому сталь для их изготовления должна обладать высокой прокаливаемостью. Это обеспечивает высокие механические свойства по всему сечению штампа. Важно, чтобы сталь не была склонна к обратимой отпускной хрупкости, так как быстрым охлаждением крупных штампов ее устранить нельзя. Состав и термическая обработка более часто применяемых штамповых сталей приведены в табл. 2. В соответствии с указанными требованиями для штампов горячей обработки давлением применяют легированные стали с 0,3–0,6% С которые после закалки подвергают отпуску при 550–680° С на троостит или троостосорбит. Среди них следует выделить несколько групп, обладающих в наибольшей степени теми свойствами, которые необходимы для определенных условий эксплуатации. Крупные ковочные (молотовые) штампы, испытывающие повышенные ударные и изгибочные нагрузки, а также инструмент ковочных машин и прессов, нагревающихся не выше 500–550° С при умеренных нагрузках, изготовляют из полутеплостойких сталей 5ХНМ и 5ХГМ (вместо никеля содержит 1,2–1,6% Мn), обладающих повышенной вязкостью. Таблица №2 Присутствие в стали молибдена или вольфрама (5ХНВ) повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой отпускной хрупкости. Сталь 5ХНМ прокаливается полностью в блоке 400x300x300 мм. Закалка штампов производится в масле. Отпуск крупных штампов проводится при температуре 550–580°С (HRC35–38), а мелкие при 500–540° С (HRC 40–45). Структура стали после отпуска – троостосорбит. Механические свойства стали 5ХНМ при температуре 500°C составляют: sв = 900МПа, sО,2 = 650 МПа, d = 20¸22% и y = 70%. Стали 5ХГМ и 5ХНВС при одинаковой со сталью 5ХНМ прокаливаемостью уступают ей в вязкости из-за замены никеля марганцем или увеличения содержания хрома и кремния. Они предназначены для средних штампов со стороной 300–400 мм или для крупных (сталь 5ХНВС) простой формы. Сталь 5ХНВ по стойкости равноценна стали 5ХНМ, но имеет меньшую прокаливаемость, так как вольфрам повышает ее слабее, чем молибден. Она применяется для небольших и средних штампов со стороной 200 – 300 мм. Средненагруженный инструмент, работающий с разогревом поверхности до температуры 600°С, а также инструмент с большой поверхностью, работающий при температурах 400–500°С, изготовляют из стали 4Х5В2ФС и 4Х5В4ФМС. Например, из них изготовляют выталкиватели для неглубоких отверстий, матрицы, различные вставки, инструмент для штамповки труднодеформируемых металлов, пресс-форм для литья под давлением алюминиевых сплавов и т.д. Фазовый состав этих сталей в отожженном состоянии – легированный феррит и карбиды типа М23С6 и М6С. Эти стали теплостойки, мало чувствительны к резкой смене температур, обладают повышенной окалиностойкостью, устойчивы против корродирующего действия жидкого алюминия и обладают высокой прочностью при хорошей вязкости. Стали повышенной теплостойкости 3Х2В8Ф и 4Х2В5ФМ используют для деформирования при разогреве поверхности до температуры 600–700°С (сохраняется твердость HRC45, s0.2=1000 МПа). Из них изготовляют тяжело-нагруженный штамповый инструмент, например прошивные пуансоны, выталкиватели для глубоких отверстий, матрицы пресс-формы для отливок под давлением медных сплавов и т.д. Превращения в сталях 4Х5В4ФМС, ЗХ2В8Ф и 4Х2В5ФМ, протекающие при термической обработке, во многом сходны с превращениями в быстрорежущей стали. Эти стали при закалке нагреваются до высоких температур для растворения возможно большего количества карбидов и получения после закалки высоколегированного мартенсита. Так как при температуре закалки карбиды полностью не растворяются, стали сохраняют мелкое зерно. При отпуске происходит дополнительное повышение твердости вследствие дисперсионного твердения при одновременном снижении пластичности и вязкости. Для получения достаточной вязкости отпуск проводят при более высоких температурах на твердость HRC 45 – 50, что соответствует структуре троостит. Механические свойства после термической обработки следующие: sв = 1500¸1800 МПа, s0,2 = 1350¸1650 МПа (при температуре 600–650°С – s0,2 = 900¸1100 МПа), d = 25% (30–40% при температуре 650°С) и КС =2¸5,5 кГ×м/см2. Стали 4Х5МФС, 4Х5В2ФС, 4Х4ВМФС и другие с небольшими добавками вольфрама (молибдена) отличаются повышенной разгаростойкостью благодаря более высокой вязкости. Теплостойки до 600°С. Присутствие 4–5% Сr придает им хорошую окалиностойкость и повышенную износостойкость при нагреве. Эти стали предназначены для инструмента с высокой устойчивостью к резкой смене температур, в частности, для инструмента высокоскоростной штамповки. Для пресс-форм, менее нагруженных в тепловом отношении, используют стали 4ХВ2С, Х12, 7X3, 8X3, коррозионностойкую сталь 30X13, конструкционные стали 40Х, 30ХГС и др. Для повышения стойкости пресс-формы также как и штампы подвергают азотированию, цианированию, борированию и хромированию.
42. Твердые сплавы для режущего инструмента.

В качестве материалов для инструментов используются твердые сплавы, которые

состоят из твердых карбидов и связующей фазы. Они изготавливаются методами

порошковой металлургии.

Характерной особенностью твердых сплавов является очень высокая твердость

87…92 HRC при достаточно высокой прочности. Твердость и прочность зависят от

количества связующей фазы (кобальта) и величины зерен карбидов. Чем крупнее зерна

карбидов, тем выше прочность.

Твердые сплавы отличаются большой износостойкостью и теплостойкостью. Основными твердыми сплавами являются группы ВК (WC + Co), TK (WC + TiC + Co), TTK (WC + TiC + TaC + Co). Наиболее распространенными сплавами группы ВК являются сплавы марок ВК3, ВК6, ВК8,

ВК20, где число показывает содержание кобальта в процентах, остальное – карбиды вольфрама WC. Сплавы группы ТК марок Т30К6, Т14К8 – первое число показывает

содержание карбидов титана в процентах, второе – содержание кобальта в процентах.

Сплаы этой группы лучше противостоят изнашиванию, обладают большей твердостью,

тепло- и жаростойкостью, стойкостью к коррозии, но меньшей теплопроводностью и

большей хрупкостью. Используются на средних и высоких скоростях резания.

Сплавы с малым количеством кобальта обладают повышенной твердостью и

износостойкостью, но минимальной прочностью, Поэтому их используют для

чистового точения (ВК3, Т30К4).

Сплавы с повышенным содержанием кобальтаиспользуют для чернового точения

(ВК8, Т14К8).

Сплав ВК20 начинают использовать для армирования штампов, что повышает их

износостойкость.

Износостойкость инструментов из твердых сплавов превышает износостойкость

инструментов из быстрорежущих стале в 10…20 раз и сохраняется до температур

800…1000oС.



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.231.243.21 (0.015 с.)