Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Радиоактивность. Виды ионизирующих излучений и их характеристикиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Ионизирующие излучения – потоки частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов и молекул среды. Чаще всего их возникновение связано с радиоактивностью – самопроизвольным превращением (распадом) одних атомных ядер в другие, сопровождаемым испусканием ионизирующих излучений. Такие превращения претерпевают только нестабильные ядра. Радиоактивность, наблюдающаяся у ядер, существующих в природных условиях, называется естественной. Радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам. Для измерения активности радиоактивных веществ в международной системе единиц СИ принят беккерель (Бк), равный одному распаду в секунду. На практике может использоваться другая единица – кюри (Ки) – Ки = 3,7 х 1010 Бк. Важнейшей характеристикой любого радиоактивного вещества является период его полураспада – Т½ -время, по истечению которого число радиоактивных атомов вещества уменьшается в два раза. У одних радиоактивных веществ этот период исчисляется тысячами и даже миллиардами лет, а у других – секундами или их долями. Например, Т½ урана-235 – около 700 млн.лет, радона-219 – 4с, а полония-212 – всего 0,0000003 с. Радиоактивное загрязнение окружающей среды обычно характеризуется плотностью загрязнения местности (кБк/м2; Ки/км2) и различных поверхностей (расп/см2 х мин), а также объемной активностью (Бк/л; Ки/л) и удельной активностью (Бк/кг; Ки/кг) объема или массы вещества.
Виды ионизирующих излучений
Ионизирующие излучений по своей природе подразделяются на корпускулярные (альфа- и бета-частицы) и электромагнитные (гамма- и рентгеновские лучи). При искусственно вызванном распаде ядер вещества (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т.д.) наряду с перечисленными видами ионизирующих излучений имеет место также нейтронное излучение. Основными характеристиками ионизирующих излучений являются: - удельная ионизирующая способность (число пар ионов, образующихся на 1 см пути распространения излучения в данной среде); -длина пробега частицы или расстояние, на котором электромагнитное излучение способно ионизировать среду; -скорость распространения излучения. Для одной и той же среды эти характеристики зависят от энергии излучения, которая в свою очередь определяется конкретным радиоактивным веществом. Альфа-частицы представляют собой положительно заряженные ядра гелия, содержащие два протона и два нейтрона. Это сравнительно тяжелые частицы (массой в 7360 раз больше массы электрона) высоких энергий (2-8 МэВ), излучаемые почти исключительно ядрами тяжелых элементов – урана, плутония, тория, радона и т.д. Обладая значительными массой, зарядом и относительно небольшой скоростью движения (около 2500 км/с), альфа-частицы имеют высокую ионизирующую способность (40000 пар ионов на 1 см пути в воздухе). Вследствие большого расхода энергии на ионизацию, длина пробега этих частиц незначительна и в воздухе составляет 1-8 см. В тканях организма человека, имеющих большую по отношению к воздуху плотность, длина пробега альфа-частиц ничтожна. Альфа-частицы не могут проникнуть ни через одежду человека, ни через кожный эпителий. Поэтому если источник излучения этих частиц находится вне организма (внешнее облучение), они не представляют сколько-нибудь серьезной опасности здоровья людей. Однако при попадании этого источника внутрь организма, например с пищей или воздухом (внутреннее облучение), альфа-частицы становятся исключительно опасными для человека. Бета-частицы (электроны или позитроны) подобно альфа-частицам обладают способностью к ионизации вещества. Но поскольку масса бета-частицы значительно меньше массы альфа-частицы, среднее значение удельной ионизации бета-частицы в воздухе – около 100 пар ионов на одном сантиметре пути, а длина пробега – несколько метров, при скорости частиц, близкой к скорости распространения электромагнитных излучений. При облучении тела человека длина ее пробега составляет всего несколько миллиметров. Бета-частицы задерживаются одеждой, а при внешнем облучении открытого тела человека, в зависимости от величины энергии излучения, они могут задерживаться в кожном эпителии, вызывая его пигментацию (так называемый “ядерный загар”) и ожоги кожи, либо проникать через него, образуя язвы на теле. Особую опасность для здоровья представляет попадание бета – частиц внутрь организма с пищей, водой и воздухом. Гамма-излучение как и любое другое электромагнитное излучение, существует в виде отдельных порций – квантов, обладающих определенной энергией. Оно возникает главным образом при радиоактивном распаде ядер атомов вещества и принципиально не отличается от рентгеновского, испускаемого электронной оболочкой атома и быстрыми электронами при их взаимодействии с веществом. Гамма-кванты электрически нейтральны, поэтому само по себе гамма-излучение ионизирующими свойствами не обладает. Ионизация происходит за счет передачи части энергии гамма-квантов электронам облучаемого вещества, разрыва их связи с ядрами атома и придания им начальной скорости движения. Поэтому удельная ионизирующая способность гамма-излучения относительно невелика и характеризуется образованием нескольких пар ионов на одном сантиметре пути в воздухе. Вместе с тем расстояния, на которые распространяется гамма-излучение в воздухе, достигают нескольких километров. Гамма-излучения обладают высокой проникающей способностью через вещества, имеющие большую плотность, в том числе и через ткани тела. При этом она тем выше, чем больше энергия гамма-излучения. На практике ослабление интенсивности гамма-излучения различными веществами характеризуется величиной слоя половинного ослабления, представляющего слой вещества, при прохождении которого интенсивность гамма-излучения уменьшается в два раза. Для различных веществ величина этого слоя при одной и той же энергии излучения будет разной, так как она зависит от свойств вещества и прежде всего от его плотности.
Величина слоя половинного ослабления гамма-излучения. Таблица 26
Высокая проникающая способность гамма-излучения делает его одинаково опасным как при внутреннем, так и при внешнем расположении источника радиоактивного излучения. Нейтронное излучение имеет место только при искусственно вызванном радиоактивном распаде. Нейтроны электрически нейтральны, и это позволяет им беспрепятственно проникать в глубь атомов облучаемого вещества. Достигая ядер, нейтроны либо поглощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно большое количество энергии (до 50%) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов водорода. Поэтому вещества, содержащие большое количество атомов водорода (вода, графит, парафин), широко используются как для защиты от нейтронного излучения, так и для замедления движения нейтронов. Например, вода служит в качестве замедлителя быстрых нейтронов, они становятся неустойчивыми и, распадаясь, порождают протоны, бета-частицы и фотоны гамма-излучения. При таких ядерных реакциях могут образовываться новые радиоактивные изотопы и возникает наведенная радиоактивность, в свою очередь, тоже вызывающая ионизацию (например, при ядерном взрыве). Таким образом, при нейтронном облучении людей конечный биологический эффект связан с ионизацией, производимой вторичными частицами или фотонами гамма-излучения. Следовательно, степень ионизации среды при нейтронном воздействии зависит от энергии нейтронов, а также от химического состава облучаемого вещества. Нейтроны по величине их энергии могут быть представлены четырьмя группами: быстрые нейтроны с энергией более 100 кэВ, промежуточные – с энергией от 100 до 1 кэВ, медленные – с энергией менее 1 кэВ и тепловые нейтроны с энергией около 0,025 эВ. Эффективность воздействия нейтронов на живой организм по отношению, например, к эффективности гамма-излучения превосходит последнее, когда речь идет о медленных нейтронах, в три раза, а если воздействие на человека оказывается быстрыми нейтронами, - в десять раз. При облучении организма человека разными видами ионизирующих излучений в различных дозах возникают количественно, а иногда и качественно различные биологические эффекты, определяемые критериями характера воздействия данного вида излучения на организм человека.
|
|||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 495; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.189.236 (0.007 с.) |