Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Пропедевтическое значение истории науки для теории науки

Поиск

Рассматривая установления, их взаимосвязи и изменения, которым они подвержены, мы видим, как работа, проделываемая историком науки, дополняет работу теоретика науки. Материал, полученный в результате таких исследований, сам может стать исходным для теоретико-научных размышлений и по этой причине, как уже было сказано, имеет пропедевтическое значение для теории науки. Я позволю себе здесь только четыре замечания, поясняющие как именно это происходит и как на этой основе определяются новые области исследования в теории науки.

1. Анализ исторических фактов позволяет разработать типологию названных выше установлений и связей между ними, а также причин их принятия или изменения.

Смысл этого замечания ясен из примеров, приведенных выше, относящихся к отдельным установлениям или целям, стоящим за ними. В качестве возможных нормативных понятий, помимо прочих назывались простота, высокая степень фальсифицируемости, наглядность, выполнение определенных каузальных принципов; добавим еще теологические, прагматические или эстетические цели, которые могли бы лежать в основе таких понятий. Но типология, построенная на этом или аналогичном материале, должна служить не просто средством обобщенного описания того, что наблюдалось или наблюдается в науке, а исходным пунктом, определяющим дальнейшие направления развития теории науки. Цель такой систематизации в том, чтобы определенным образом классифицировать допущения современной теории науки, сделать выводы о возможном использовании их в будущем и, наконец, облегчить формулирование новых предпосылок.

2. Исторический анализ должен выяснить и зафиксировать источники применяемых или формулируемых правил, методов и принципов теории науки.

Понимание этой исторической обусловленности должно предохранить от прогрессирующего вырождения, которое столь часто сопутствует принятию научных концепций - оно начинается с некритического их рассмотрения, затем их выдают за нечто самоочевидное и, наконец, приходят к тому, что исчезает всякая проблематичность. Поэтому осознание исторической обусловленности имеет критическую функцию. Оно снова и снова возвращает нас к истокам научных положений, разрушая ореол их необходимости или неопровержимости. Именно по этой причине историческое сознание делает возможным их отвержение. Теория науки, следовательно, тоже не должна ограничиваться только выявлением и констатацией исторической обусловленности, она должна еще рассматривать подобную обусловленность как единственное достаточное основание адекватной критики. Если история науки может высветить различные основания научных теорий, то в ней могут быть найдены и основания критики этих теорий. Таким образом, мы не только воздаем должное ситуационному комплексу, в котором возникает и работает наука, но и получаем возможность его критики, основанной на точном знании.

3. Исторический материал должен стать определенной мерой, с которой сопоставляются границы, значимость и применимость научных методов, принципов, постулатов и пр. разрабатываемых учеными-теоретиками. Было бы крайне поучительно проследить за тем, как классики науки в своей практике сплошь и рядом пренебрегали тем, что вошло в доктрины современных теоретиков науки; и, правда, если бы они следовали этим доктринам, им пришлось бы отказаться от своих собственных теорий (об этом подробнее будет сказано в 5, 6, 9, 10 главах).

4. Всегда, когда предпосылки научных категорий уходят корнями в области, не относящиеся к физике (рано или поздно исследователь обнаруживает эти корни), обсуждение проблем теории науки должно быть расширено так, чтобы оно затрагивало и эти вненаучные области.

Недостаточно поверхностное констатирование того факта, что некоторые установления имеют своими источниками теологические, прагматические или эстетические цели и стремления; сами эти цели должны стать объектом анализа и критики. Разумеется, такой путь ведет далеко за рамки узко трактуемой теории науки - в традиционные сферы философии. Но это неизбежно, если мы ищем обоснования исторически обусловленных установлений.

Все перечисленные выше задачи служат практической цели: выяснить предпосылки точных естественных наук, их исторические основания и границы их применимости. Это выяснение требуется прежде всего для того, чтобы сохранять критическую дистанцию по отношению к данным предпосылкам. Кроме того, оно могло бы помочь в тех случаях, когда возможно использование иных предпосылок, как наличествующих в данной исторической ситуации, так и заново формулируемых.

Суммируя, можно было бы сказать - типология, построенная на основе введенных здесь категорий, сможет стать стимулом для исследовательской рефлексии об условиях научной деятельности, концептуализировать эти условия и показать, что они должны рассматриваться лишь наряду с другими возможными условиями. Тем самым исследователь впервые получает реальную возможность осознать свою деятельность и критически отнестись к ней. С признанием исторической обусловленности и относительности предпосылок научного знания связана новая проблема, встающая перед исследователем: сохраняют ли эти исторические условия и отношения свою обязательность? Пытаясь найти глубинные основания своего выбора, исследователь обращает внимание на его истоки, погружаясь таким образом в проблематику, традиционно относившуюся к философии. Так было со всеми великими исследователями, которые не замыкались в узких границах своей научной специализации. Наконец, эти размышления впервые обеспечивают условия подлинно обоснованного выбора, возможность оставаться при прежних посылках, принять другие, уже сформулированные с помощью введенной типологии, или же попытаться сформулировать весь предпосылочный аппарат заново.

С учетом сказанного ранее очевидно, что, говоря об "обоснованном" выборе, я не имею в виду какой-то абсолютный базис. Речь идет только о том, что исследователь должен быть готовым к рассмотрению всего, что способно стать основанием его выбора. Конечно, множество возможных предпосылок его теоретической деятельности никогда не будет полностью исчерпанным, но любой элемент этого множества должен рассматриваться с позиций, обозначенных выше.

Таким образом, давно известная и все еще нерешенная проблема, поставленная исторической мыслью, проблема, которая, казалось, возникает только в сфере гуманитарных наук, неожиданно для многих появляется и в лоне естествознания. Это означает, что границы между этими двумя сферами науки не могут быть проведены по-старому и с прежней четкостью. В 13 главе мы еще специально остановимся на этом вопросе. Однако сперва попытаемся пояснить приведенные здесь соображения соответствующими примерами из истории науки.


Глава 5. Критика аисторизма теорий науки Поппера и
Карнапа на примере
"Astronomia Nova" Кеплера

Теоретические концепции Кеплера, представленные им в его "Новой астрономии", если рассматривать их под интересующим нас углом зрения, возникли в результате попыток определить орбиту Марса. После многолетних напряженных трудов Кеплер, наконец, признал, что его прежние подходы к этой проблеме были обречены на неудачу. Этот вывод был сделан после того, как выяснилось, что между значениями, вычисленными в соответствии с его гипотезами, и значениями, полученными в наблюдениях Тихо Браге, имелось расхождения в 8'. Кеплер писал:"Нам же, благодаря милосердию Божию, дан в лице Тихо Браге такой добросовестный наблюдатель, что в его наблюдениях ошибка в 8', характерная для птолемеева вычисления, попадается лишь для того, чтобы мы с благодарностью оценили эту милость и воспользовались ею. Наконец, это затруднение дает нам возможность найти истинный вид небесных движений..., установив причины, по каким сделанные предложения были некорректны... Таким образом, эти 8' указали путь к обновлению всей астрономии, они явились материалом для большей части данной работы"[42].

Такое утверждение никого не удивило бы в наши дни, разве что своей страстностью. Говорят, что с него берет начало все современное естествознание, ибо решающую роль Кеплер отводил данным наблюдения. В принципе это верно, однако, не следует при этом забывать, что беззаботность, с какой прежде обращались с данными наблюдения, то равнодушие, с каким воспринималось даже большее расхождение с ними, чем те 8', из-за которых Кеплер решился отвергнуть гипотезы о характере марсианской орбиты - почему он и называл их hypothesis vicaria, то есть временными или рабочими гипотезами - никак не могут быть отнесены на счет низкого уровня науки или личной несостоятельности ученых. В действительности, подобное отношение было тесно связано с теоретическими воззрениями, господствовавшими со времен Птолемея. Лежащая в основе этих воззрений формула, так называемая аксиома Платона, гласившая, что небесные тела движутся по кругам с постоянной угловой скоростью, отталкивалась от метафизики, согласно которой земной и небесный порядок вещей принципиально различны как несовершенное и совершенное, как низшее и высшее. Эта идущая от античности теория была отчетливо ориентирована на "спасение явлений" (svzein ta fainomena; поэтому метафизика служила ей средством, при помощи которого вносился порядок в хаос явлений. Когда же это не вполне удавалось, под рукой всегда было объяснение. Разве можно слепо доверять чувствам?! И в особенности недопустимо это по отношению к объектам, столь возвышенным и удаленным, как небесные тела. Ощущения могли быть более или менее достоверными, когда они доставлялись вещами подлунного мира, но на их основании нельзя было с уверенностью судить о движениях небесных тел.

Мы были бы слишком наивны, если бы усмотрели в решительном отказе Кеплера от этого, идущего с древних времен, отношения к данным наблюдения свидетельство победы разума и науки в их современном понимании. На самом деле Кеплер только показал, что он руководствуется иными метафизическими идеями, чем его оппоненты. За его приведенными выше словами стояли фундаментальные теолого-гуманистические тезисы Коперника: Творение по своей структуре доступно человеческому познанию и, следовательно, дух не может противоречить восприятиям; нет непреодолимых различий между вышним и подлунным мирами, а Земля - одно из тел вселенского хоровода; Вселенная устроена по принципу простоты и т.д. [43]. Но система Коперника со всеми ее теолого-гуманистическими предпосылками в духе Ренессанса на самом деле была даже менее обоснована, чем современная ей птолемеевская система. И, как уже отмечалось, чтобы поддержать эту систему, нужно было прибегать к тем же средствам, какие использовались аристотелианцами, то есть выдвигать теологические аргументы против теологических и метафизические аргументы против метафизических. Новая система не имела неоспоримого и единого основания, которое позволило бы судить о ее истинности, тем более, что само вращение Земли оставалось неразрешимой загадкой до тех пор, пока сформулированный Ньютоном принцип инерции не объяснил, почему живущие на Земле люди не ощущают этого вращения[44].

Решение Кеплера последовать за Коперником, а значит, признать ощущения и данные наблюдений высшей инстанцией, прежде всего было спонтанным актом, а не выводом из рациональных (как бы мы их ни понимали) рассуждений. Следовательно, идеи Кеплера вырастают из культурного контекста, уже готового к тому, чтобы отвергнуть систему Птолемея.

5.1. Теоретико-научный анализ "Новой астрономии" Кеплера

Когда первоначальные попытки Кеплера вычислить орбиту Марса потерпели неудачу, это натолкнуло его на мысль заняться вычислениями орбиты Земли[45].

 

С этой целью, используя теорию Тихо Браге, он вычислил гелиоцентрическую позицию Марса (точка М на рис. 1) и Земли (точка Е) в данный момент времени

Т. Углы E и , образованные соответствующими радиус-векторами и диаметром, на котором расположен сегмент АС, дают представление о том, как была определена эта позиция. Следует только напомнить, что на рис. 1 орбитальные отношения изображены не так, как это было у Тихо Браге, а так, как они были впервые вычислены Кеплером с помощью данных Тихо.

Очевидно, гелиоцентричность здесь - это отнесенность к точке С; но, как было известно уже Тихо Браге, эта точка не соответствует ни Солнцу (точка А на рис. 1), ни, как могло бы казаться, центру орбиты Земли (точка В), хотя последнее стало известно позднее. Связав положение Марса с положением Земли (геоцентрическая долгота), Кеплер смог вычислить параллакс ЕМС и угол СЕМ [46]. Отсюда можно было получить относительное расстояние Земли от точки С (по закону синусов) из уравнения

 

где СМ = 100,000. Затем Кеплер выбрал другой момент Т', когда Марс опять находился в том же положении, проделав полное обращение по своей орбите, а Земля, учитывая ее собственное движение, находилась в другом положении (точка F на рис. 1). Применяя тот же метод, Кеплер вновь вычислил расстояние от Земли до точки C (CF). Наконец, он выбрал третий момент Т" (а затем и четвертый, который мы здесь опустим); соответственно, он получил третье положение Земли (точка G) и расстояние СG. Из этого он заключил, что С не может быть, как предполагалось, центром окружности, на которой лежали бы все три вычисленные положения Земли. Более вероятно, что эта точка является точкой экванта (punctum aequans), то есть точкой, вокруг которой Земля вращается с постоянной угловой скоростью, поскольку за время перемещения Земли из одной вычисленной точки в другую проходит полный марсианский год, а углы, образованные CE и CF, CF и CG, были равны.

Далее Кеплер собирался вычислить расстояния от точки экванта C и точки Солнца А до орбитального центра B, а также определить линию апсид, то есть диаметра, на котором лежат А, B и С. Однако АB могла быть определена только в том случае, если бы была известна действительная гелиоцентрическая долгота Марса по отношению к точке А (но не ранее названная "гелиоцентрическая долгота" Марса, которая на самом деле определялась по отношению к точке С). Поэтому Кеплер более не мог опираться только на теории Тихо; и он смело возвращается к ранее отвергнутым им же hypothesis vicaria, а ошибку, вытекавшую из их применения, пытается компенсировать грубым приближением в вычислениях. В результате он пришел к следующему выводу: Земля и Марс движутся по круговым орбитам с разделенным эксцентриситетом; две эксцентрические точки C и А (рис. 1) лежат на одной линии апсид, находясь на равном расстоянии от центра окружности по разные ее стороны.

Что же в конечном счете было основанием для такого вывода? Теоретические воззрения, проблематичные даже для самого Кеплера: 1. Теории Тихо (включая утверждения о гелиоцентрических положениях Марса и Земли) и 2. Hypothesis vicaria самого Кеплера, ранее столь решительно отвергаемые им. К тому же он использовал довольно грубое приближение в вычислениях; кроме того, он руководствовался классически-философским допущением о круговом движении небесных тел наряду с данными наблюдений Тихо, считавшимися почти непогрешимыми.

Но ни догматы, ни проблематичные допущения не помешали Кеплеру сделать следующий смелый шаг в сторону не только от Птолемея, но и от Коперника. Он отказывается от попыток строить эквантную окружность, то есть решать задачу, навязанную традицией, и вместо этого пытается выявить закономерность, объясняющую неравномерность орбитальной скорости Земли, вращающейся вокруг Солнца. Снова прибегнув к приближениям, он вычислил, что скорость Земли в точках перигелия и афелия обратно пропорциональна расстояниям до Солнца в этих точках. Этого минимума эмпирических данных оказалось достаточно, чтобы сразу же идти дальше, экстраполируя все точки на орбитальной кривой и распространяя этот вывод на все планеты. Таким образом, Кеплер формулирует следующие универсальные положения:

1. Все планеты движутся по круговым орбитам с разделенным эксцентриситетом; Солнце находится в одной из точек эксцентриситета.

2. Скорость планет обратно пропорциональна их расстояниям от Солнца.

Второе положение - так называемый закон радиуса.

Обращает на себя внимание не только спекулятивный характер этого закона, но и то обстоятельство, что Кеплер вообще искал такого рода закономерности, оставив попытки построения эквантной окружности. Тем самым он уже отошел от аксиомы Платона, то есть от утверждения, что планеты движутся с постоянной угловой скоростью. Определяющим здесь было его мистическое отношение к Солнцу. Воображаемые точки, вокруг которых, как считалось, вращаются небесные тела, были для него чем-то призрачным. Его тревожило уже то, что в системе Коперника Солнце на самом деле не находилось в центральной точке (и потому она не могла быть названа "гелиоцентрической" в строгом смысле) [47] и выполняло лишь вспомогательную роль источника света. Для Кеплера же Солнце представляло собой священный центр Вселенной, воплощение Бога-Отца. Поэтому от Солнца должна была исходить сила, заставлявшая планеты кружиться вокруг него (Кеплер связывал ее со Святым Духом, а неподвижные звезды - с Богом-Сыном). Поэтому так важно было определить эту силу, и поэтому вычислению подлежало движение планет по отношению именно к Солнцу, а не к воображаемой точке в пространстве.

Именно эта страстная убежденность в гелиоцентризме дала Кеплеру возможность искать и находить нечто вроде закона радиуса, а непоколебимая уверенность, выросшая на почве возрожденческого гуманизма, в том, что принципы устройства Вселенной постижимы для человеческого разума, придавала ему смелость, позволявшую видеть в рискованных экстраполяциях силу доказательства. Вдохновляемый своей философией, он неотступно продвигался вперед, приступив к решению задачи, которая не могла не казаться аристотелианцам изумительной дерзостью - связать закон радиуса с принципом рычага, а затем с гильбертовским магнетизмом, тем самым связывая небесные и земные движения. Отсюда уже было недалеко до воззрения на Вселенную не как на подобие божественной формы жизни (instar divine animalis), а как на подобие часового механизма (instar horologii)[48]. Однако в своей гипотезе о причинах движения планет, которую можно было бы рассматривать как предвосхищение теории тяготения Ньютона, он вновь возвращается к аристотелизму, абсолютно противопоставляя покой и движение (он полагал, что если бы не сила, генерируемая Солнцем, то движение планет из-за их естественной инерции остановилось бы). Это закрывало ему путь к закону инерции и, следовательно, как мы теперь понимаем, к наиболее важному аргументу в пользу идеи Коперника.


После размышлений над небесной механикой он вернулся к теории движения Марса. Рассмотрим рис. 2.

 

По закону радиуса скорость планеты в точке P на орбите с центром C обратно пропорциональна расстоянию = PS до Солнца S: следовательно, время, затрачиваемое на движение в этом сегменте, пропорционально PS. Но как выразить эту зависимость точной формулой? Казалось невозможным найти прямое отношение между радиусом и временем движения. И здесь Кеплер вспомнил так называемую теорему Архимеда, выражающую отношение площади круга и радиуса окружности. Согласно этой теореме площадь сектора QCP можно рассматривать как предел суммы бесконечного числа бесконечно малых треугольников с высотой, равной радиусу окружности. Это подсказало Кеплеру идею связать время, за которое планета проходит путь PQ, не непосредственно с радиусом окружности, а с площадью сектора, описываемого радиус-вектором. Не долго думая, он применил теорему Архимеда, благодаря чему в его распоряжении оказалось достаточно сомнительное средство выражения через площадь, описываемую отрезком CP (то есть радиус-вектором орбиты) времени, необходимого для прохождения планетой соответственной дуги орбиты, и тем самым он получил по крайней мере косвенную возможность выразить соотношение времени и радиус-вектора в следующей формуле:

(1)

где t - время прохождения планетой дуги PQ, а Т - время, затрачиваемое планетой на прохождение всей орбиты. Если r = 1, то площадь QCP = 1/2, площадь CSP = 1/2 e sin, а - площадь круга.

Из (1) следует:

(2)

может быть вычислено, если известно t (хотя методы, которыми располагал Кеплер, могли давать только грубое приближение).

Итак, расстояние между планетой и Солнцем определяется уравнением

(3),

получаемым, в соответствии с рис. 2 по закону косинусов. Наконец, из этого следует уравнение

(4),

из которого по простому отношению косинусов выводится значение v, и, следовательно, положение планеты в момент времени t.

В этих рассуждениях используются: 1) закон радиуса, с помощью которого устанавливается отношение между временем и радиусом; 2) модификация теоремы Архимеда, посредством которой от вывода площади сектора круга, описываемого радиус-вектором, переходят к вычислению площади QSP, то есть чего-то совершенно отличного от сектора круга. Таким образом, отношение между временем и радиус-вектором преобразуется в отношение между временем и площадью круга. Едва ли можно говорить об эмпирических основаниях закона радиуса, а указанный переход от теоремы Архимеда к ее модификации не был обоснован математически. И то, и другое было хорошо известно Кеплеру. К этому надо добавить, что в уравнениях 1 - 4 фигурирует эксцентриситет e, что стало возможным только благодаря hypothesis vicaria, которые Кеплер вначале отвергал.

Таким образом, и на этой стадии исследований Кеплер вновь показал, что его не слишком заботила точность и достаточность эмпирического, математического или теоретического обоснования, хотя, как это видно из отрывка, приведенного в начале этой главы, их возможность им предполагалась. Поэтому нет ничего удивительного в том, что, исходя из минимума эмпирических данных, он в конечном счете отказался и от остававшейся части аксиомы Платона - от допущения о круговой форме планетарных орбит - как ранее он отказался от другой ее части, от допущения о постоянстве угловой скорости планет.

На этот шаг он решился в ходе новой попытки определить орбиту Марса. Вначале Кеплер применил уже описанный метод, использованный при вычислении орбиты Земли. Так же как тогда он сравнивал различные положения Земли по отношению к константному положению Марса, так и теперь три различных положения Марса соотносятся им с одним и тем же положением Земли. Тем самым были определены три расстояния Марса от Солнца и три угла, образуемых соответствующими радиус-векторами. С помощью утомительных, хотя и простых, тригонометрических вычислений он определил линию апсид и значение эксцентриситета Солнца для трех различных случаев. Все результаты были различны. Из этого мог быть сделан только один вывод: орбита Марса не может быть круговой.

Этот революционный для астрономии вывод был сделан на основе тех же смелых допущений, как и при вычислении орбиты Земли. Почва, на которой теперь стоял Кеплер, была не менее зыбкой, чем раньше: теория Тихо, hypothesis vicaria и вера в правильность данных Тихо.

И на заключительной стадии исследования, когда он пришел к заключению, что орбиты планет должны иметь форму эллипса, спекулятивный дух ему не изменил. Обратимся к рис. 3.

 

 

Прежде всего, следуя принципу простоты, Кеплер постулировал отклонение орбиты Марса от круговой формы по формуле b = 1-e2, где 1 - радиус, e - эксцентриситет Солнца, b - ось действительной орбиты. Позднее он представил b = 1 - (e2/2).

Но однажды он сделал открытие, суть которого мы сможем понять, взглянув на рис. 4, представляющий орбиту Марса. Он заметил, что

(5).

Здесь - наибольший угол, образованный схождением сегмента P1S (планета-Солнца) и P1C (планета-центральная точка окружности). Если затем просто подставить предполагаемое значение b в вычисления, то получится

 

а поскольку e << 1, то

,

но 1 + (e2/2) равно 1.00429, что согласуется с вычисленным результатом (5).

"Когда я увидел это, - писал Кеплер, - я словно бы очнулся ото сна и увидел свет"[49].

Полученное отношение, хотя оно было лишь приблизительным и верным только благодаря малости e, немедленно вдохновило его на новые спекуляции, представленные рис. 5.

 

Он предположил, что (см. рис. 5) отношение, аналогичное уравнению (5) должно выглядеть следующим образом:

.

Иначе говоря, отношение расстояния между Солнцем и планетой на "истинной" орбите к расстоянию между Солнцем и планетой на "воображаемой" орбите аналогично отношению r/b на рис. 3.

При r = 1 получаем:

SP cos = PM

PM = 1 + e cos.

Из этого следует, что планетарные орбиты выражаются формулой

(6)

После изнурительных трудов - "paene usque ad insanium" - Кеплер установил, что уравнение (6) выражает формулу эллипса, хотя и приблизительно (надо напомнить, что математический аппарат, доступный Кеплеру, был еще достаточно примитивен).

Итак, и на этой стадии, как мы видим, Кеплер вновь прибегает к использованию предположений, спекуляций и грубых приближений; более того, проверка уравнения (6) предполагает сравнение значений SPe с теми значениями, которые были получены методами определения расстояния, применяемыми Кеплером; критические замечания об этих методах были сделаны выше.

В заключение рассмотрим еще один шаг Кеплера (см. рис. 6).

 

В соответствии с формулой (1) здесь также должно выполняться соотношение

(7).

Другими словами, время t, необходимое, чтобы планета прошла по эллиптической дуге QPc, относится ко времени T, затрачиваемому на прохождение всей орбиты, так, как площадь SQPc относится к общей площади эллипса, где b - радиус малой оси, а большая ось принята за 1. Здесь Кеплер делает предположение, аналогичное тому, какое уже было сделано ранее (см. рис. 4 и 5):

(8).

Согласно (1)

.

Если подставить это значение в (8) и (7), то в результате простых вычислений получим:

.

Решающий шаг в этом выводе - принятие за исходный пункт уравнения (7) - есть не что иное, как новое и не менее проблематичное применение теоремы Архимеда; теперь она применяется к сектору эллипса, вершиной которого является один из его фокусов, в котором помещается Солнце.

Теперь можно сформулировать два первых закона Кеплера [ср. уравнение (6)]:

(9)

(10)

Уравнение (10) говорит о том, что планета движется по эллипсу, в одном из фокусов которого находится Солнце. Уравнение (9) говорит, что в равные промежутки времени радиус "Солнце-планета" пробегает равные площади.

По отношению к Марсу, который является центральной проблемой и исходным пунктом всех рассуждений, это означает, что  и e в уравнении (9) могут быть определены только благодаря ранее отброшенным (даже в усовершенствованном виде) hypothesis vicaria. Поэтому они использовались как при вычислениях SPс, так и в методе оценки и проверки полученного результата (включая определение трех положений Марса по отношению к одной и той же позиции Земли).

Вот как в действительности обстояли дела с обоснованием двух первых законов Кеплера, обоснованием, которое еще и сегодня часто представляют чем-то таким, что возникло исключительно на базе опыта.

Кстати сказать, теория Птолемея в сравнении с теорией Кеплера вовсе не проигрывает, ибо, во-первых, из-за малости орбитальных эксцентриситетов планет система Птолемея описывает движения планет почти с той же точностью, как теория Кеплера (что же касается Меркурия, то он является для обеих теорий своего рода enfant terrible); во-вторых, аксиома Платона имела ясное философское обоснование, тогда как для Кеплера эллиптическая форма планетарных орбит, естественно, оставалась загадкой. Его попытка обосновать эту форму спецификой движений планет не привела к успеху. В-третьих, то же можно сказать о его усилиях опровергнуть аристотелианскую аргументацию против идеи вращения Земли. Все это было типичными гипотезами ad hoc [50]. Неудивительно, что его "Новая астрономия" была встречена современниками без всякого энтузиазма.

Анализ методов и доказательств, фигурирующих в "Новой астрономии", позволяет нам сказать со всей определенностью: если бы Кеплер следовал доктринам, принятым в теории науки нашего времени, он должен был бы отбросить оба своих закона, значимость которых вряд ли кто-либо сегодня осмелится отрицать. Покажем это на двух примерах: методологии науки Поппера-Лакатоса и индуктивной логики Карнапа.

5.2. "Новая астрономия" Кеплера в свете философии
науки Поппера и Лакатоса

Основной методологический постулат Поппера гласит, что научная теория должна быть фальсифицируемой. Если же фальсификация уже произошла, нам не следует предотвращать крах теории с помощью гипотез ad hoc или других допущений. Поппер пишет: "Если такое решение положительно, то есть если сингулярные следствия оказываются приемлемыми, или верифицированными, то теория может считаться в настоящее время выдержавшей проверку, и у нас нет оснований отказываться от нее. Но если вынесенное решение отрицательное или, иначе говоря, если следствия оказались фальсифицированными, то их фальсификация фальсифицирует и саму теорию, из которой они были логически выведены" [51].

О каком "решении" здесь идет речь? Этот термин означает, что так называемые базисные предложения (под которыми Поппер понимает сингулярные экзистенциальные предложения типа: то-то и то-то существует в такой-то и такой-то пространственно-временной области) [52] противоречат или не противоречат данной теории. Но если теории противоречат только отдельные сингулярные базисные предложения, у нас еще нет основания считать теорию фальсифицированной. "Мы будем считать ее фальсифицированной только в том случае, если нам удалось открыть воспроизводимый эффект, опровергающий теорию. Другими словами, мы признаем фальсификацию только тогда, когда выдвинута и подкреплена эмпирическая гипотеза низкого уровня универсальности, описывающая такой эффект. Подобные гипотезы можно назвать фальсифицирующими гипотезами "[53]. В качестве примера Поппер приводит высказывание "В нью-йоркском зоопарке живет семейство белых воронов"[54]; оно фальсифицирует универсальное высказывание "Все вороны черные". Но, добавляет он, "в большинстве случаев до фальсификации некоторой гипотезы мы имеем в запасе другую гипотезу, поэтому фальсифицирующий эксперимент обычно является решающим экспериментом, который помогает нам выбрать одну из двух гипотез" [55].

Итак, фальсифицирующий эффект выводится из другой гипотезы, уже имеющейся в запасе. Конечно, поскольку такого рода решения опираются на базисные предложения, они принципиально могут быть пересмотрены (опять-таки с помощью базисных предложений); но практически мы обычно в какой-то момент прекращаем поиск опровержений и пытаемся закрепиться на избранной позиции. Поэтому Поппер вводит следующее правило: "Мы раз и навсегда отказываемся от того, чтобы приписывать какую-либо подтверждающую силу теории, фальсифицированной в ходе интерсубъективно проверяемого эксперимента" [56].

Однако Кеплер поступал как раз наоборот, когда он использовал результаты ранее фальсифицированных теорий для построения других теорий и затем оценивал последние с помощью первых. Кроме того, он находился в явном противоречии с попперовской методологией еще и в другом отношении. В то время отсутствие каких-либо явлений, указывающих на вращение Земли, рассматривалось как фальсификация всякой формы гелиоцентризма. Чтобы обойти эту фальсификацию, Кеплер пытался делать то, что решительно запрещает Поппер [57], а именно: спасти свою теорию с помощью гипотез ad hoc - и кроме того, с помощью гипотез, не менее проблематичных, чем его астродинамика. Следуй он предписаниям Поппера, ему пришлось бы отказаться от своей теории "раз и навсегда".

Сам Поппер полагает, что успех Кеплера оказался возможным отчасти потому, что "гипотеза окружности, от которой он отталкивался в своем исследовании, была относительно легко фальсифицируемой" [58]. Он прав в той мере, в какой выражение "относительно легко" связано с тем, что гипотеза окружности являлась "трехмерной" ("поскольку для ее фальсификации необходимы по крайней мере четыре принадлежащих данной области сингулярных высказывания, соответствующих четырем точкам ее графического представления"[59]), тогда как эллиптическая гипотеза являлась "пятимерной" ("поскольку для ее фальсификации необходимы по крайней мере шесть сингулярных высказываний, соответствующих шести точкам на графике" [60]). Однако рассуждения способны скорее лишь завуалировать тот факт, что фальсификация гипотезы о круговой орбите была в высшей степени проблематичной, ибо основана она была на весьма сомнительных посылках.

Пример Кеплера свидетельствует не только о том, что фальсифицирующие базисные предложения трудно распознать (эта трудность, я считаю, не была в достаточной мере осознана Поппером[61]), но и о том, что отбрасывание теории в каждом случае, когда фальсификация может быть установленной, вовсе не всегда является лучшей стратегией для науки [62].

До сих пор мы сравнивали методологию Кеплера с тем, что сегодня может быть названо классическим попперианством. Однако наши выводы остаются в силе даже с учетом тех улучшений, которые были внесены в эту концепцию И.Лакатосом в последние годы.

По его мнению, существует универсальное правило, по которому можно определить, является ли серия теорий прогрессивной. (Конечно, он совершенно прав, когда говорит о "серии", а не о единичных теориях, ведь фактически каждая теория связана с другими, отличными от нее теориями).

Он пишет:"Будем считать, что такой ряд теорий является теоретически прогрессивным..., если каждая новая теория имеет какое-то добавочное эмпирическое содержание по сравнению с ее предшественницей, то есть предсказывает некоторые новые, ранее не известные факты. Будем считать, что теоретически прогрессивный ряд теорий является также и эмпирически прогрессивным..., если какая-то часть этого добавочного эмпирического содержания является подкрепленным, то есть если каждая новая теория ведет к действительному обнаружению новых фактов. Наконец, назовем сдвиг проблем прогрессивным, если он и теоретически, и эмпирически прогрессивен, и регрессивным - если нет"[63].

Здесь приходится снова отметить, что Кеплеру пришлось бы отбросить свою теорию, если бы следовал правилу Лакатоса.

Кеплер мог, правда, благодаря своей теории предсказать некоторые новые, ранее неизвестные факты; но, с другой стороны, еще большее количество фактов, которые вполне согласовались с астрономией Птолемея и физикой Аристотеля, он не мог объяснить. К этим фактам, в первую очередь, относятся явления, которые - из-за отсутствия разработанного принципа инерции - заставляли отрицать вращение Земли. Поэтому нельзя утверждать, что теория Кеплера имела "дополнительное эмпирическое содержание" по сравнению с предшествовавшими ей теориями.

Это, однако, еще не все. Само подтверждение фактов, предсказанных Кеплером, было, как уже отмечалось выше, в высшей степени проблематичным. Мы уже видели, к примеру, что для вычисления орбиты Марса Кеплеру понадобились hypothesis vicaria и что полученные результаты он проверял методами, основанными все на тех же гипотезах. Кеплер и сам вполне осознавал эти недостатки, поэтому и прибегал к допущениям более метафизического и теологического характера (к этому моменту мы еще вскоре вернемся). Может ли правило Лакатоса чем-либо помочь при решении вопроса о допустимости всех этих предпосылок?

Очевидно, выражение "предсказание факта" не так ясно и просто, как представляется Лакатосу. Можно ли усматривать в предсказании факта теоретический прогресс, особенно когда предпосылкой такого предсказания является нечто рискованное, проблематичное или попросту глупое? Что касается открытия Кеплера, то разве сама приемлемость его предсказаний не ставится под вопрос тем фактом, что предпосылками их являются метафизическ<



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 308; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.186.172 (0.021 с.)