Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Кислородсодержащие соединенияСодержание книги
Поиск на нашем сайте
Кислородсодержащие соединения содержаться в нефтяных системах от 0,1-1,0 до 3,6 % (масс.). С повышением температуры кипения дистиллятных фракций содержание их возрастает, причем основная часть кислорода сосредоточена в смолоасфальтеновых веществах. В составе нефтей и дистиллятов содержится до 20 % и более кислородсодержащих соединений. Среди них традиционно выделяют вещества кислого и нейтрального характера. К кислым компонентам относятся карбоновые кислоты и фенолы. Нейтральные кислородсодержащие соединения представлены кетонами, ангидридами и амидами кислот, сложными эфирами, фурановыми производными, спиртами и лактонами. a. Карбоновые кислоты являются наиболее изученным классом кислородсодержащих соединений нефти. Содержание нефтяных кислот по фракциям меняется по экстремальной зависимости, максимум которой приходится, как правило, на легкие и средние масляные фракции. Методом хромато-масс-спектрометрии идентифицированы различные типы нефтяных кислот. Большинство из них относится к одноосновным (RCOOH), где в качестве R может быть практически любой фрагмент углеводородных и гетероорганических соединений нефти. Давно замечено, что групповые составы кислот и нефтей соответствуют друг другу: в метановых нефтях преобладают алифатические кислоты, в нафтеновых - нафтеновые и нафтеноароматические кислоты. Обнаружены алифатические кислоты от C1 до С25 линейного строения и некоторые разветвленного строения. При этом у нефтяных кислот соотношение н-алкановых и разветвленных кислот совпадает с соотношением соответствующих углеводородов в нефтях. b. Алифатические кислоты представлены, в первую очередь, н-алкановыми кислотами. Из разветвленных кислот более распространены содержащие метильный заместитель в основной цепи. Все низшие изомеры этого типа найдены в нефтях, вплоть до С7. Еще одна важная группа алифатических кислот - кислоты изопреноидного строения, среди которых доминируют пристановая (С19) и фитановая (С20). c. Алициклические (нафтеновые) кислоты нефти - это моноциклокарбоновые кислоты - производные циклопентана и циклогексана; полициклические могут содержать до 5 колец (данные для калифорнийской нефти). Группы СООН в молекулах моноциклических кислот непосредственно соединены с циклом или находятся на конце алифатических заместителей. В цикле может быть до трех (чаще всего метальных заместителей), наиболее распространенными положениями которых являются 1, 2; 1, 3; 1, 2, 4; 1, 1, 3 и 1, 1, 2, 3. Содержание бициклических нафтеновых кислот в ряде случаев приближается, а иногда и превышает содержание моноциклических кислот, хотя индивидуальные их представители пока не идентифицированы. Молекулы три-, тетра- и пентациклических кислот, выделенных из нефтей, построены в основном из сконденсированных между собой циклогексановых колец. Установлено присутствие в нефтях гексациклических нафтеновых кислот с циклогексановыми кольцами. Ароматические кислоты в нефтях представлены бензойной кислотой и ее производными. В нефтях обнаружено и множество гомологических рядов полициклических нафтеноароматических кислот, а идентифицированы моноароматические стероидные кислоты в самотлорской нефти. Из кислородсодержащих соединений нефтяные кислоты характеризуются наибольшей поверхностной активностью. Установлено, что поверхностная активность как малосмолистых, так и высокосмолистых нефтей значительно снижается после удаления из них кислых компонентов (кислот и фенолов). Сильные кислоты принимают участие в образовании ассоциатов нефтей, что показано при изучении их реологических свойств. Гораздо хуже кислот изучены фенолы. Их содержание в нефтях западно-сибирских месторождений колеблется от 40 до 900 мг/л. В западно-сибирских нефтях концентрации фенолов возрастают в ряду С6<С7 << С8<С9. В нефтях обнаружены фенол, все крезолы, ксиленолы и отдельные изомеры С9. Установлено, что соотношение между фенолами и алкилфенолами колеблется в пределах от 1: (0,3-0,4) до 1: (350-560) и зависит от глубины залегания и возраста нефти. В некоторых нефтях идентифицирован β-нафтол. Высказано предположение о наличии соединений типа о-фенилфенолов, находящихся в нефтях в связанном состоянии из-за склонности к образованию внутримолекулярных водородных связей. При исследовании антиокислительной способности компонентов гетероорганических соединений нефти установлено, что концентраты фенольных соединений являются наиболее активными природными ингибиторами. В нейтральных кислородсодержащих соединениях калифорнийских нефтей обнаружены все простейшие алкилкетоны С3-С6, ацетофенон и его нафтено- и аренопроизводные, флуоренон и его ближайшие гомологи. Выход из самотлорской нефти концентрата кетонов, состоящий в основном из диалкилкетонов, составляет 0,36 %, при этом степень извлечения кетонов составляет только 20%, что свидетельствует о наличии кетонов больших молекулярных масс, не извлекаемых по данной методике. При исследовании кетонов нефтях Западной Сибири установлено, что в них присутствуют кетоны С19-С32, причем в метановых нефтях преобладают алифатические кетоны, а в нафтеновых нефтях - с циклановыми и ароматическими заместителями. Можно предполагать наличие в нефтях спиртов в свободном состоянии, в связанном они входят в состав сложных эфиров. Из гетероорганических соединений нефти наиболее изучена склонность кислородсодержащих соединений к интенсивным межмолекулярным взаимодействиям. Азотсодержащие соединения содержатся в нефтях (по данным для 500 нефтей) в пределах от 0,02-0,40 % (масс.), хотя в некоторых может достигать 0,8-1,5 и даже 10-12%. Все азотсодержащие соединения нефти являются, как правило, функциональными производными аренов, в связи с чем имеют сходное с ними молекулярно-массовое распределение. Однако в отличие от аренов азотсодержащие соединения концентрируются в высококипящих фракциях нефти и являются составной частью CAB. До 95 % имеющихся в нефти атомов азота сосредоточены в смолах и асфальтенах. Высказано мнение, что при выделении смол и асфальтенов с ними соосаждаются в виде донорно-акцепторных комплексов даже сравнительно низкомолекулярные азотсодержащие соединения. В соответствии с общепринятой классификацией по кисотно-основному признаку азотсодержащие соединения делятся на азотистые основания и нейтральные соединения. a. Азотсодержащие основания являются, по-видимому, единственными носителями основных свойств среди компонентов нефтяных систем. Доля азотсодержащих оснований в нефти, титруемых хлорной кислотой в уксуснокислой среде, колеблется от 10 до 50 %. В настоящее время в нефтях и нефтепродуктах идентифицировано более 100 алкил- и ареноконденсированных аналогов пиридина, хинолина и других оснований. b. Сильноосновные азотсодержащие соединения представлены пиридинами и их производными: c. К слабоосновным азотсодержащим соединениям относятся анилины, амиды, имиды и N-циклоалкилпроизводные, имеющие в пиррольном кольце в качестве заместителя алкильные, циклоалкильные и фенильные группы: В составе сырых нефтей и прямогонных дистиллятов чаще всего обнаруживаются производные пиридина. С увеличением температуры кипения фракций обычно возрастает содержание азотсодержащих соединений, при этом изменяется их структура: если в легких и средних фракциях преобладают пиридины, то в более тяжелых - их полиароматические производные, а в продуктах термической переработки при повышенных температурах в большей степени присутствуют анилины. В светлых фракциях доминируют азотистые основания, а в тяжелых фракциях, как правило, - нейтральные азотсодержащие соединения. К нейтральным азотсодержащим соединениям, не содержащим в молекулах иных гетероатомов, кроме атома азота, и выделенным из нефти, относятся индолы, карбазолы и их нафтеновые и серосодержащие производные: При выделении нейтральные азотсодержащие соединения образуют ассоциаты с кислородсодержащими соединениями и извлекаются попутно с азотсодержащими основаниями. Наряду с названными монофункциональными в нефтях идентифицированы следующие азотсодержащие соединения: a. Полиароматические с двумя атомами азота в молекуле: b. Соединения с двумя гетероатомами (азота и серы) в одном цикле – тиазолы и бензтиазолы и их алкил- и нафтеновые гомологи: c. Соединения с двумя гетероатомами азота и серы в разных циклах: тиофенсодержащие алкил-, циклоалкилиндолы и карбазолы. d. Соединения с карбонильной группой в азотсодержащем гетероцикле, такие как пиперидоны и хинолоны: e. Порфирины.
Порфирины являются типичными примерами нативных нефтяных комплексных соединений. Порфирины с ванадием в качестве координационного центра (в форме ванадила) или никелем. Ванадилпорфирины нефти - в основном гомологи двух рядов: алкилзамещенных порфиринов с различным суммарным числом атомов углерода в боковых заместителях порфинового цикла и порфиринов с дополнительным циклопентеновым кольцом. Металлпорфириновые комплексы присутствуют в природных битумах до 1 мг/100 г, а в высоковязких нефтях - до 20 мг/100 г нефти. При исследовании характера распределения металлпорфириновых комплексов между составными частями нефтяной дисперсной системы (НДС) в работе методами экстракции и гель-хроматографии установлено, что 40% ванадилпорфиринов сосредоточено в дисперсных частицах (примерно поровну в составе ядра и сольватного слоя), а оставшаяся их часть и никель-порфирины содержатся в дисперсионной среде. Ванадилпорфирины в составе асфальтенов вносят значительный вклад в поверхностную активность нефтей, при этом собственная поверхностная активность асфальтенов невелика. В меньшей степени изучено влияние металлпорфиринов на дисперсное строение нефти и условия протекания фазовых переходов в нефтяных системах. Есть данные об их отрицательном влиянии наряду с другими гетероатомными компонентами на каталитические процессы нефтепереработки. Помимо этого, они должны сильно влиять на кинетику и механизм фазовых переходов в НДС. Значение азотсодержащих соединений нефти как природных поверхностно-активных веществ очень велико, они во многом наряду со смолоасфальтеновыми веществами определяют поверхностную активность на жидких границах раздела фаз и смачивающую способность нефти на границах раздела порода - нефть, металл - нефть. Азотсодержащие соединения и их производные - пиридины, гидроксипиридины, хинолины, гидроксихинолины, имидазолины, оксазолины и т. д. - являются природными нефтерастворимыми ПАВ, обладающими ингибирующими свойствами при коррозии металлов в процессе добычи, транспортировки и переработки нефти. Более слабыми поверхностно-активными свойствами характеризуются такие азотсодержащие соединения нефти, как гомологи пиррола, индола, карбазола, тиазолы и амиды. Смолоасфальтеновые вещества (CAB). Одной из наиболее представительных групп гетероорганических высокомолекулярных соединений нефти являются CAB. Характерные особенности CAB - значительные молекулярные массы, наличие в их составе различных гетероэлементов, полярность, парамагнетизм, высокая склонность к ММВ и ассоциации, полидисперсность и проявление выраженных коллоидно-дисперсных свойств - способствовали тому, что для их исследования оказались неподходящими методы, обычно применяемые при анализе низкокипящих компонентов. Азот в CAB преимущественно входит в гетероароматические фрагменты пиридинового (основного), пиррольного (нейтрального) и порфиринового (металлокомплексного) типа. Сера входит в состав гетероциклов (тиофеновых, тиациклановых, тиазольных), тиольных групп и сшивающих молекулы сульфидных мостиков. Кислород в смолах и асфальтенах представлен в форме гидроксильных (фенольных, спиртовых), карбоксильных, эфирных (простых, сложных лактонных), карбонильных (кетонных, хинонных) групп и фурановых циклов. Согласно классификации природных ископаемых с углеводородной основой, к нефтям относят те, что содержат до 35-40 % (масс.) CAB, а природные асфальты и битумы содержат до 60-75 % (масс.) CAB, по другим данным - до 42-81 %. В отличие от более легких компонентов нефти, признаком отнесения которых к своим группам было сходство их химического строения, критерием объединения соединений в класс под названием CAB служит их близость по растворимости в конкретном растворителе. При действии на нефть и нефтяные остатки больших количеств петролейного эфира, низкокипящих алканов происходит осаждение веществ, называемых асфальтенами, которые растворимы в низших аренах, и сольватирование других компонентов - мальтенов, состоящих из углеводородной части и смол. Нерастворимые в сероуглероде и других растворителях вещества относят к карбоидам. Вещества, растворимые только в сероуглероде и осаждающиеся четыреххлористым углеродом, называют карбенами. Карбоиды и карбены, как правило, обнаруживаются в составе тяжелых продуктов деструктивной переработки нефти в количестве нескольких процентов. В составе сырых нефтей и в остатках первичной переработки нефти их практически нет. В настоящее время установлено, что в нефтях разного происхождения присутствует более 60 элементов, из которых около 30 относятся к металлам. В нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %. Среди отдельных металлов, содержание которых в нефтях превышает 10-5 %, доминируют: V – 10-5-10-2 %; Ni – 10-4-10-3 %; Fe – 10-4-10-3 %; Zn – 10-5 –10-3 %; Hg - около 10-5 %; В – 10-3-0,3 %; Na, K, Ca, Mg – 10-3-10-4 %. Суммарное содержание в нефтях металлов в среднем колеблется от 0,01 до 0,04 % (масс.), а в выделенных из них CAB иногда может достигать десятых долей процента. При изучении распределения тяжелых металлов (ванадия и никеля) по хроматографическим фракциям гудрона западно-сибирской нефти было найдено, что основная масса металлсодержащих соединений сосредоточена в смолах и асфальтенах, а углеводородные фракции содержат до 1-3 ррm металлов. Содержание микроэлементов в асфальтенах выше, чем в смолах. Поскольку содержание смол в нефтях и остаточных фракциях значительно больше, чем асфальтенов, то основная масса металлов все же сосредоточена в смолах. При термолитическом воздействии на нефтяные системы, например, в процессе перегонки, происходят изменения структурных и физических характеристик смол, а также их микроэлементного состава. Основная часть атомов металлов (кроме ванадия) связана в составе смол с серо- и кислородсодержащими функциональными группами (карбоксильными, сульфоксидными и др.), размещающимися в термически мало устойчивых, главным образом неароматических фрагментах молекул. Термолитическое разрушение таких фрагментов ведет к удалению соответствующей части атомов металлов из состава смол и повышению доли комплексов металлов с менее полярными и более ароматичными лигандами. Металлсодержащие соединения нефти и нефтяных систем по своей химической природе - это соли металлов с веществами кислотного характера, элементоорганические соединения, полилигандные комплексы или π-комплексы с ароматическими или гетероорганическими соединениями. В виде солей с органическими кислотами, фенолами, тиолами в нефти, по-видимому, находится преобладающая часть щелочных и щелочноземельных металлов, что приводит к их легкому гидролизу и удалению из нефти в процессе водной промывки. Присутствие в нефти металлоорганических соединений со связью углерод - металл не доказано, хотя вероятность их обнаружения достаточно высока. Наиболее распространенный тип металлсодержащих соединений нефти относится к полилигандным комплексам, где в качестве лиганда могут быть любые молекулы из широкой гаммы гетероорганических соединений. Такие комплексы образуются при координации атома металлов Fe, Co, V, Ni, Cr, Zn и др. с атомами N, S, О гетероорганических соединений. Прочность комплексов определяется природой гетероатома и металла. В связи со специфичностью донорно-акцепторных взаимодействий соли двухвалентной ртути предпочтительнее образуют комплекс с насыщенными сульфидами, а одновалентной - с арилсульфидами; титан селективно взаимодействует с основными азотистыми соединениями и гораздо слабее - с многими другими гетеросоединениями. Компоненты нефти, включающие различные соединения, во многом влияют на ее физико-химические свойства. Интерес представляют органические соединения на присутствие которых указывает содержание в нефти кислорода, азота, серы и других элементов. Количество этих соединений (нафтеновые кислоты, асфальтены, смолы и т. д.) в составе природной нефти незначительно. Но кислород и серосодержащие вещества существенно влияют на свойства поверхностей раздела в пласте, на распределение жидкостей и газов в поровом пространстве и, следовательно, на закономерности движения флюидов. С этими веществами также тесно связаны процессы, имеющие важное промысловое значение - образование и разрушение нефтеводяных эмульсий, выделение из нефти и отложение парафина в трубах и в пласте. Содержание серы в нефти может достигать 6 %. Она присутствует и в свободном состоянии, и в виде сероводорода, но чаще входит в состав сернистых соединений и смолистых веществ. Сернистые соединения нефти (меркаптаны, сульфиды, сероводород) вызывают сильную коррозию металлов, снижают товарные качества нефти. К кислородсодержащим компонентам нефти относят нафтеновые и жирные кислоты, фенолы, кетоны и некоторые другие соединения. Содержание нафтеновых и жирных кислот изменяется от сотых долей процента до 2 %. С наличием в нефти нафтеновых и жирных кислот связано использование щелочей для повышения нефтеотдачи пластов. Взаимодействие щелочей и нефтяных кислот приводит к образованию хорошо растворимых в воде поверхностно-активных веществ, снижающих поверхностное натяжение на границе «нефть — вода». Компоненты нефти, представляющие смесь высокомолекулярных соединений, в состав молекул которых входят азот, сера, кислород и металлы, называют асфальтосмолистыми веществами. Их важная особенность — способность адсорбироваться на поверхности поровых каналов и оказывать сильное влияние на движение жидкостей и газов в пласте. Эффективность методов повышения нефтеотдачи в основном обусловлена содержанием в нефти асфальтосмолистых веществ. Нефтяной парафин - это смесь двух групп твердых углеводородов, резко отличающихся друг от друга по свойствам, - парафинов и церезинов. Парафины - углеводороды состава С17-С35, имеющие температуру плавления 27-71 °С. Церезины имеют более высокую молекулярную массу (состав их С36-С55), а температура плавления - 65-88 °С. Парафин в скважинах и промысловых коллекторах отлагается при содержании его в нефти 1,5-2 %. Причины выпадения парафина из нефти в скважинах: понижение температуры при подъеме нефти на поверхность, выделение из нефти газовой фазы и уменьшение растворяющей способности нефти. Отложения парафина снижают пропускную способность трубопроводов и требуют значительных усилий по их предупреждению и удалению. Классификация нефтей.
Газожидкостная смесь УВ состоит преимущественно из соединений парафинового, нафтенового и ароматического рядов. Вместе с тем для практики добычи и переработки нефти представляют большой интерес входящие в ее состав высокомолекулярные органические соединения, содержащие кислород, серу, азот. К числу этих соединений относятся нафтеновые кислоты, смолы, асфальтены, парафин и др. Хотя их содержание в нефтях невелико, они существенно влияют на свойства поверхности раздела в пласте (в частности, поверхности пустотного пространства), на распределение жидкостей и газов в пустотном пространстве и, следовательно, на закономерности движения УВ при разработке залежей.
В зависимости от содержания легких, тяжелых и твердых УВ. а также различных примесей нефти делятся на классы и подклассы. При этом учитывается содержание серы, смол и парафина.
Нефти содержат до 5—6 % серы. Она присутствует в них в виде свободной серы, сероводорода, а также в составе сернистых соединений и смолистых веществ — меркаптанов, сульфидов, дисульфидов и др. Меркаптаны и сероводород—наиболее активные сернистые соединения, вызывающие коррозию промыслового оборудования.
По содержанию серы нефти делятся на:
— малосернистые (содержание серы не более 0,5%);
— сернистые (0,5—2,0%);
— высокосернистые (более 2,0%).
Асфальтосмолистые вещества нефти — высокомолекулярные соединения, включающие кислород, серу и азот и состоящие из большого числа нейтральных соединений неизвестного строения и непостоянного состава, среди которых преобладают нейтральные смолы и асфальтены. Содержание асфальтосмолистых веществ в нефтях колеблется в пределах 1—40%. Наибольшее количество смол отмечается в тяжелых темных нефтях, богатых ароматическими УВ.
По содержанию смол нефти подразделяются на:
— малосмолистые (содержание смол ниже 18 %);
— смолистые (18—35 %);
— высокосмолистые (свыше 35%).
Нефтяной парафин—это смесь твердых УВ двух групп, резко отличающихся друг от друга по свойствам,—парафинов C17H36—С35Н72 и церезинов С36Н74—C55H112. Температура плавления первых 27—71°С, вторых—65—88°С. При одной и той же температуре плавления церезины имеют более высокую плотность и вязкость. Содержание парафина в нефти иногда достигает 13—14 % и больше.
По содержанию парафинов нефти подразделяются на:
малопарафинистые при содержании парафина менее 1,5 % по массе;
парафинистые— 1,5—6,0 %;
высокопарафинистые — более 6 %.
В отдельных случаях содержание парафина достигает 25%. При температуре его кристаллизации близкой к пластовой, реальна возможность выпадения парафина в пласте в твердой фазе при разработке залежи.
Физические свойства нефтей.
Газосодержание (газонасыщенность)пластовой нефти - это объем газаVг растворенного в 1м3 объема пластовой нефти Vпл.н:
G=Vг/Vп.н.
Газосодержание обычно выражают в м3/м3 или м3/т. Растворимость газа – это максимальное количество газа, которое может быть растворено в единице объема пластовой нефти при определенных давлении и температуре. Газосодержание может быть равным растворимости или меньше ее. Его определяют в лаборатории по пластовой пробе нефти, постепенно снижая давление от пластового, при котором отобрана проба, до атмосферного. Процесс дегазирования пробы может быть контактным или дифференциальным.
Контактным (одноступенчатым) называют процесс, при котором весь выделяющийся газ находится над нефтью в контакте с ней. При дифференциальном процессе дегазирования выделяющийся из раствора газ непрерывно отводится из системы. При дифференциальном дегазировании в нефти остается больше газа, чем при том же давлении в условиях контактного дегазирования. Это объясняется следующим образом. Из нефти выделяется в первую очередь метан, и в составе оставшихся газов увеличивается доля тяжелых УВ, что приводит к увеличению их растворимости. Дегазирование нефти при поступлении ее из пласта в промысловые сепараторы более сходно с контактным. Это и следует принимать во внимание при учете изменения свойств нефти вследствие перехода от пластовых условий к поверхностным. Газосодержание пластовых нефтей может достигать 300— 500 м3/м3 и более, обычное его значение для большинства нефтей 30—100 м3/м3. Вместе с тем известно большое число нефтей с газосодержанием не выше 8—10 м3/м3. Коэффициентом разгазирования нефти называется количество газа, выделяющееся из единицы объема нефти при снижении давления на единицу. Обычно при снижении давления коэффициент разгазировання увеличивается, но эта закономерность соблюдается не всегда. Промысловым газовым фактором Г называется количество добытого газа в м3, приходящееся на 1 м3 (т) дегазированной нефти. Он определяется по данным о добыче нефти и попутного газа за определенный отрезок времени. Различают начальный газовый фактор, обычно определяемый по данным за первый месяц работы скважины, текущий газовый фактор, определяемый по данным за любой промежуточный отрезок времени, и средний газовый фактор, определяемый за период с начала разработки до какой-либо даты. Величина промыслового газового фактора зависит как от газосодержания нефти, так и от условий разработки залежи. Она может меняться в очень широких пределах Если при разработке в пласте газ не выделяется, то газовый фактор меньше газосодержания пластовой нефти, так как в промысловых условиях полной дегазации нефти не происходит. Давлением насыщения пластовой нефти называется давление, при котором газ начинает выделяться из нее. Давление насыщения зависит от соотношения объемов нефти и газа в залежи, от их состава, от пластовой температуры.
В природных условиях давление насыщения может быть равным пластовому давлению или может быть меньше него. В первом случае нефть будет полностью насыщена газом, во втором—недонасыщена. Разница между давлением насыщения и пластовым может колебаться от десятых долей до десятков мегапаскалей. Пробы нефти, отобранные с разных участков одной залежи, могут характеризоваться разным давлением насыщения. Так, на Туймазинском месторождении в Башкирии оно меняется от 8 до 9,4 МПа. Это связано как с изменением свойств нефти и газа в пределах площади, так и с влиянием на характер выделения газа из нефти свойств породы, количества и свойств связанной воды и других факторов. Сжимаемость пластовой нефти обусловливается тем, что, как и все жидкости, нефть обладает упругостью, которая измеряется коэффициентом сжимаемости (или объемной упругости) βн:
βн = (1/V) (ΔV/Δp),
где ΔV—изменение объема нефти-, V—исходный объем нефти. Δр — изменение давления. Размерность βн —1/Па, или Па-1.
Под коэффициентом сжимаемости понимается приращение объема нефти при изменении давления на единицу. Величина его для большинства пластовых нефтей лежит в диапазоне (1—5) • 10-3 МПа-1. Сжимаемость нефти учитывается наряду со сжимаемостью воды и коллекторов главным образом при разработке залежей в условиях упруговодонапорного режима, а также на начальной стадии разработки для определения изменения пластового давления на отдельных участках или забойных давлений в отдельных скважинах, когда ход процесса разработки еще не стабилизировался и упругие силы еще играют заметную роль. Коэффициент теплового расширения aн показывает, на какую часть DV первоначального объема Vo изменяется объем нефти при изменении температуры на 1 °С
aн = (1/Vo) (DV/Dt).
Размерность a — 1/°С. Для большинства нефтей значения коэффициента теплового расширения колеблются в пределах (1-20) *10-4 1/°С. Коэффициент теплового расширения нефти необходимо учитывать при разработке залежи в условиях нестационарного термогидродинамического режима при воздействии на пласт различными холодными или горячими агентами. Его влияние наряду с влиянием других параметров сказывается как на условиях текущей фильтрации нефти, так и на величине конечного коэффициента извлечения нефти. Особенно важную роль коэффициент теплового расширения нефти играет при проектировании тепловых методов воздействия на пласт. Объемный коэффициент пластовой нефти b показывает, какой объем занимает в пластовых условиях 1 м3 дегазированной нефти:
bн= Vпл.н/Vдег = rн./rпл.н
где Vпл.н—объем нефти в пластовых условиях; Vдег—объем того же количества нефти после дегазации при атмосферном давлении и t=20°С; rпл.п—плотность нефти в пластовых условиях; r—плотность нефти в стандартных условиях. Объем нефти в пластовых условиях увеличивается по сравнению с объемом в нормальных условиях в связи с повышенной температурой и большим количеством газа, растворенного в нефти. Пластовое давление до некоторой степени уменьшает величину объемного коэффициента, но так как сжимаемость нефти весьма мала, давление мало влияет на эту величину. Значения объемного коэффициента всех нефтей больше единицы и иногда достигают 2 — 3. Наиболее характерные величины лежат в пределах 1,2—1,8. Объемный коэффициент пластовой нефти используется при подсчете запасов. Используя объемный коэффициент, можно определить «усадку» нефти, т. е. установить уменьшение объема пластовой нефти при извлечении ее на поверхность. Усадка нефти U
U=(bн-1)/bн*100
При подсчете запасов нефти объемным методом изменение объема пластовой нефти при переходе от пластовых условий к поверхностным учитывают с помощью так называемого пересчетного коэффициента. Под плотностью пластовой нефти понимается масса нефти, извлеченной из недр с сохранением пластовых условий, в единице объема. Она обычно в 1,2—1,8 раза меньше плотности дегазированной нефти, что объясняется увеличением ее объема в пластовых условиях за счет растворенного газа. Известны нефти, плотность которых в пласте составляет всего 0,3—0.4 г/см3. Ее значения в пластовых условиях могут достигать 1.0 г/см3.
По плотности пластовые нефти делятся на:
— легкие с плотностью менее 0.850 г/см3;
— тяжелые с плотностью более 0,850 г/.
Легкие нефти характеризуются высоким газосодержанием, тяжелые—низким.
Вязкость пластовой нефти mн, определяющая степень ее подвижности в пластовых условиях, также существенно меньше вязкости ее в поверхностных условиях. Это обусловлено повышенными газосодержанием и пластовой температурой. На вязкость пластовой жидкости больше всего влияет изменение температуры и количества растворенного газа. В пластовых условиях вязкость нефти может быть в десятки раз меньше вязкости дегазированной нефти. Например, для Арланского мест-ия это соотношение больше 20, для Ромашкинского— 5,5. Вязкость зависит также от плотности нефти: легкие нефти менее вязкие, чем тяжелые. Давление оказывает небольшое влияние на изменение вязкости нефти в области выше давления насыщения Вязкость нефти измеряется в мПа×с=сПз=10-3 Па*с
|
||||
Последнее изменение этой страницы: 2021-05-12; просмотров: 359; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.200.47 (0.019 с.) |