Цель и задачи предмета. Перспективы развития электротехники. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Цель и задачи предмета. Перспективы развития электротехники.



Тема 1 Введение.

Цель и задачи предмета. Перспективы развития электротехники.

Перспективы развития электротехники

К основным направлениям развития современной электротехники относятся:

§ разработка и выпуск электротехнических устройств и электромашин с использованием современного микропроцессорного управления;

§ повышение эксплуатационной надежности, унификации и улучшение энергетических показателей электротехнических аппаратов;

§ расширение области применения электротехнических аппаратов и электрических машин

§ развитие научно-исследовательских работ по созданию математических моделей и технологических процессов, машинных средств проектирования электротехнических изделий;

§ подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современные автоматизированный электропривод и электротехнические аппараты.

Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики электротехнических аппаратов и создать тем самым базу для дальнейшего технического прогресса промышленного производства.

 

Тема 2 Постоянный и переменный ток.

Короткое замыкание. Перегрузки. Тепловая защита

От коротких замыканий электрическую цепь сохраняет предохранитель. Внутри зданий, в отдельных квартирах все провода каждой линии должны быть защищены предохранителями.

Нельзя нарушать правила эксплуатации электроустановок, заменяя в предохранителе плавкую вставку металлическими проволочками, что создаст опасность пожара при коротком замыкании. При защите электромоторов номинальный ток плавкой вставки должен быть Iном = Iпуск/2,5 = 0,4·Iпуск. Но плавкий предохранитель защищает от коротких замыканий, а не защищает от длительных перегрузок.

Для защит электродвигателя от перегрузок устанавливают тепловое реле. Так как тепловое реле из-за биметаллической пластины обладает значительной тепловой энергией, то оно плохо защищает от токов коротких замыканий и плавкий предохранитель является его необходимым дополнением.

 

Короткие замыкания и перегрузки. Тепловая защита

Коротким замыканием называется всякое ненормальное соединение проводов с малым сопротивлением. КЗ сопровождается резким увеличением тока, большое количество теплоты. Большая часть пожаров происходит из-за коротких замыканий. При использовании теплового действия токов КЗ применяют плавкие предохранители и тепловые реле.

 

Тема 3 Электрические измерения.

Электроизмерительные приборы. Виды и методы электрических

Классификация электроизмерительных приборов по роду измеримой величины

Электроизмерительные приборы классифицируются и по роду измеряемой ими величины, так как приборы одного и того же принципа действия, но предназначенные для измерения разных величин могут значительно отличаться друг от друга по своей конструкции, не говоря уже о шкале прибора.

В таблице 1 приведен перечень условных обозначений наиболее употребительных электроизмерительных приборов.

 

Таблица 1. Примеры обозначения единиц измерения, их кратных и дольных значений

Наименование Обозначение Наименование Обозначение
Килоампер kA Коэффициент мощности cos φ
Ампер A Коэффициент реактивной мощности sin φ
Миллиампер mA Тераом
Микроампер μA Мегаом
Киловольт kV Килоом
Вольт V Ом Ω
Милливольт mV Миллиом
Мегаватт MW Микром μΩ
Киловатт kW Милливебер mWb
Ватт W Микрофарада mF
Мегавар MVAR Пикофарада pF
Киловар kVAR Генри H
Вар VAR Миллигенри mH
Мегагерц MHz Микрогенри μH
Килогерц kHz Градус стоградусной температурной шкалы oC
Герц Hz    
Градусы угла сдвига фаз φo    

Классификация электроизмерительных приборов по степени точности

Устройство

 

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется " беличьей клеткой ". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

 

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении

.

Скольжение — это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

 

Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима.

Машина постоянного тока образуется из синхронной обращённой конструкции, если её якорь снабдить коллектором, который в генераторном режиме играет роль выпрямителя, а в двигательном — преобразователя частоты. Благодаря наличию коллектора по обмотке якоря проходит переменный ток, а во внешней цепи, связанной с якорем, — постоянный.

Типы

Различают следующие виды машин постоянного тока:

· по наличию коммутации:

o с коммутацией (обычные);

o без коммутации (униполярный генератор и униполярный электродвигатель);

· по типу переключателей тока:

o с коллекторными переключателями тока (с щёточно-коллекторным переключателем);

o с бесколлекторными переключателями тока (с электронным переключателем (вентильный электродвигатель)).

· по мощности:

o микромашины — до 500 Вт;

o малой мощности — 0,5-10 кВт;

o средней мощности — 10-200 кВт;

o большой мощности — более 200 кВт.

· в зависимости от частоты вращения:

o тихоходные — до 300 об./мин.;

o средней быстроходности — 300—1500 об./мин.;

o быстроходные — 1500-6000 об./мин.;

o сверхбыстроходные — более 6000 об./мин.

· по расположению вала:

o горизонтальные;

o вертикальные.

Принцип действия

Машина постоянного тока может работать в двух режимах: двигательном и генераторном, в зависимости от того, какую энергию к ней подвести — если электрическую, то электрическая машина будет работать в режиме электродвигателя, а если механическую — то будет работать в режиме генератора. Однако электрические машины, как правило, предназначены заводом изготовителем для одного определенного режима работы — или в режиме генератора, или электродвигателя.

Электродвигатель

Электродвигатели постоянного тока стоят почти на каждом автомобиле — это стартер, электропривод стеклоочистителя, вентилятор отопителя салона и др.

В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка ротора состоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент. Направление сил определяется по правилу "левой руки". Однако этот вращающий момент способен повернуть ротор только на 180 градусов, после чего он остановится. Чтобы это предотвратить, используется щёточно-коллекторный узел, выполняющий роль переключателя полюсов и датчика положения ротора (ДПР).

Генератор

В генераторе индуктором также является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС, направление которой определяется по правилу правой руки. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора, через неподвижные щетки, посредством которых обмотка соединяется с внешней сетью.

Электронная проводимость

Электронная проводимость возникает при введении в кристалл германия с четырехвалентными атомами пятивалентных атомов (например, атомов мышьяка, ​As​).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказывается лишним, он легко отрывается от атома мышьяка и становится свободным.

Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника.

Основными носителями заряда являются электроны. Концентрация свободных электронов намного больше концентрации дырок. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником ​ n ​-типа.

Дырочная проводимость

Дырочная проводимость возникает при введении в кристалл германия трехвалентных атомов (например, атомов индия, ​In​). Атом индия с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места – дырки. На эти места могут переходить электроны из соседних ковалентных связей, что приводит к движению дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов.

Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями заряда в полупроводниках p-типа являются дырки.

p-n переход (электронно-дырочный переход) – это область контакта двух полупроводников с разными типами проводимости.

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок. Пограничная область раздела полупроводников с разными типами проводимости называется запирающим слоем. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение ​UЗ​, приблизительно равное 0,35 В для германиевых n-p-переходов и 0,6 В для кремниевых.

p-n-переход обладает свойством односторонней проводимости. Если полупроводник с p-n-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от p-n-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через p-n-переход практически не идет. Напряжение, поданное на p-n-переход, в этом случае называют обратным. Незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов.

Если p-n-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать p-n-переход, создавая ток в прямом направлении. Сила тока через p-n-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность p-n-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами.

Полупроводниковые диоды изготавливают из кристаллов кремния или германия. Они используются в выпрямителях для преобразования переменного тока в постоянный. Вольт-амперная характеристика полупроводникового диода приведена на рисунке.

Полупроводниковые диоды имеют малые размеры, длительный срок службы, механическую прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры.

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления[1] (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток.

Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянного тока в переменный ток называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

 

 

Тема 1 Введение.

Цель и задачи предмета. Перспективы развития электротехники.



Поделиться:


Последнее изменение этой страницы: 2021-05-27; просмотров: 659; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.198.170 (0.046 с.)