Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общие принципы организации сенсорных систем.Содержание книги
Поиск на нашем сайте
Все живые организмы нуждаются в информации об окружающей среде для нормальной жизнедеятельности. Для этого они должны ориентироваться в пространстве и оценивать его с помощью сенсорных систем. Деятельность любой сенс сист начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные импульсы и передачи их в мозг через цепи нейронов, образующих ряд уровней. Процесс передачи сенсорного сообщения сопровождается многократным преобразованием и перекодированием и завершается общим анализоми синтезом (опознаванием образа). После этого происходит выбор или разработка программы ответной реакции организма. Без информации, поступающей в мозг, немогут осуществляться простые и сложные рефлекторные акты вплоть до психической деятельности. По Павлову – анализатор – это вся совокупность нейронов, участвующих в восприятии раздражения, в проведении раздражения и его анализе. В любом анализаторе выделяют 3 звена: 1) рецептор – спец нерв клетки или их окончания, генерирующие нервные импульсы при действии определенного раздражителя. 2) проводниковый отдел – центростремительный нейрон, который проводит возбуждение от рецептора к коре больших полушарий головного мозга. 3) конечный (корковый отдел) – анализ и превращение нерв импульса в определенные ощущения.
78. Зрительная система. Зрение для многих животных и человека является одним из основных способов дистантной ориентировки в пространстве. С его помощью живые организмы получают информацию не только о смене дня и ночи, но и подробное изображение окружающей среды — ближней и дальней. У всех позвоночных глаз построен по камерному типу. Светопреломляющий аппарат образован роговицей и линзой — хрусталиком. Дно глазного бокала выстилает сетчатка, пространство между ней и хрусталиком заполнено стекловидным телом — прозрачным, оптически однородным гелем. У всех позвоночных, за исключением некоторых рыб и птиц, глазное яблоко приблизительно шаровидной формы. Снаружи глаз обтянут непрозрачной волокнистой тканью — склерой, которая на переднем полюсе глаза переходит в прозрачную роговицу. Хрусталик делит глазное яблоко на переднюю камеру, заполненную жидкостью, и камеру большего размера, расположенную сзади и заполненную стекловидным телом. Изнутри к склере прилегает сосудистая оболочка, богатая кровеносными сосудами, служащими для питания глаза. Продолжением сосудистой оболочки спереди являются ресничное тело и радужка. Радужка играет роль диафрагмы. Отверстие в центре радужки называется зрачком. Зрачок способствует четкости изображения предметов на сетчатке, пропуская только центральные лучи и устраняя так называемую сферическую аберрацию. Суть ее заключается в том, что лучи, попавшие на периферические части хрусталика, преломляются сильнее центральных лучей, и если их не устранять, на сетчатке могут получаться круги светорассеяния. Сетчатка представляет собой светочувствительный слой и состоит из рецепторов (палочек и колбочек) и нескольких типов нейронов. Существует два типа рецепторов: палочки и колбочки. Пигмент палочек называется родопсином, а в колбочках содержится родственный ему пигмент — йодопсин, чувствительный к красному, зеленому и синему свету.. Палочками он назвал длинные тонкие клетки, имеющие цилиндрический наружный сегмент и равный ему по диаметру внутренний. Колбочки обладают более коротким и толстым, сужающимся к вершине внутренним сегментом. Наружный сегмент колбочек по диаметру меньше внутреннего и обычно имеет коническую форму. Палочки особенно многочисленны в сетчатках ночных животных, колбочки — у дневных. Это привело Шультце к заключению, что палочки обеспечивают скотопическое (от греч. skotos — темнота и ops, opos — глаз, зрение) зрение, или зрение при низком уровне освещенности, тогда как колбочки обеспечивают фотопическое зрение и работают при более ярком освещении. Волокна зрительных нервов, перекрещиваясь между собой, образуют зрительный перекрест (хиазму).Большая часть волокон поступает в промежуточный мозг — латеральное коленчатое тело. Аксоны его клеток идут в 17—е поле коры. Часть волокон сетчатки направляется к крыше среднего мозга в ростральные холмики в предкрышечное поле и подушку в таламусе. Из подушки информация передается на область 18—го и 19—го полей коры. Предкрышечное поле ответственно за регуляцию диаметра зрачка, а ростральные холмики связаны с глазодвигательными центрами и высшими отделами зрительной Системы.
Поле 17 является центральным полем зрительной коры, а 18—е и 19—е поля — периферическими. Таким образом, единственную точную ретинотопическую карту содержит только поле 17, а смежным с ним полям 18 и 19 приписывают нетопографические ассоциативные функции.
79. слуховая система. Наружное ухо включает ушную раковину и наружный слуховой проход. Среднее ухо представляет трехкосточковую звукопередающую систему, включая молоточек, наковальню и стремя, связанные с одной стороны с барабанной перепонкой, а с другой — с окном преддверия (овальным окном) внутреннего уха. Полость среднего уха заполнена воздухом. Слуховые косточки выполняют двоякую роль. Их первая функция состоит в том, что они образуют систему рычагов, с помощью которых улучшается передача звука. Воронкообразная форма наружного уха обеспечивает свойство направленности — улучшенное восприятие звуков, идущих с определенного направления, по сравнению со звуками, идущими с других направлений. Вторая функция заключается в способности системы косточек изменять характер движения при больших интенсивностях звука. В среднем ухе есть также специальный механизм, предохраняющий слуховой рецепторный аппарат от длительных звуковых перегрузок. Достигается это сокращением мышц среднего уха, которых у млекопитающих уже две: мышца, напрягающая барабанную перепонку, и стременная мышца. Внутреннее ухо (улитка) представляет собой спирально закрученный костный канал, приподнятый в области вершины. У человека улитка имеет 2,5 витка, у кошки — 3, а у однопроходных — всего 0,25 витка. Внутри костной капсулы две мембраны разделяют улитку на три лестницы: барабанную, улитковый проток (среднюю) и лестницу преддверия. Барабанная лестница и лестница преддверия заполнены перилимфой, улитковый проток — эндолимфой. На базилярной пластинке располагается спиральный орган (рис. 4.30), который включает два типа рецепторных клеток: один ряд внутренних и три—четыре ряда наружных волосковых клеток. В базальной части спирального органа располагаются рецепторные клетки воспринимающие более высокие частоты, а в апикальной части (на вершине улитки) — клетки, воспринимающие только низкие частоты. Еще в 1863 г. Г. Гельмгольц сформулировал резонансную теорию слуха, согласно которой разные частоты кодируются своим точным положением вдоль базилярной пластинки. Эта теория основывалась на том, что базилярная пластинка натянута по ширине и механическая связь по ее длине отсутствует, т. е. колебание одной части мембраны не должно передаваться соседним участкам. Однако эти исходные предпосылки были опровергнуты в 50—60—е гг. XX столетия Д. Бекеши. Им прежде всего было доказано, что базилярная пластинка не натянута в поперечном направлении и что она имеет механическую связь по всей длине. Поэтому он предложил свою новую теорию, которую обычно называют теорией бегущей волны. Бегущая волна имеет наибольшую амплитуду на строго определенном участке мембраны в зависимости от частоты. И хотя сама волна движется, ее огибающая для данной частоты стационарна. Смещения пиков для высоких частот направлены к основанию, а для низких частот — к куполу улитки. У млекопитающих хорошо выражена чувствительность к высоким частотам. Расширение полосы высокочастотных сигналов является результатом эволюции цепи слуховых косточек в среднем ухе млекопитающих по сравнению с представителями других классов, обладающими всего одной слуховой косточкой. Предельные возможности слуха млекопитающих находятся в диапазоне от 20—30 Гц до 150—200 кГц, т. е. простираются далеко в область ультразвуковых частот.
Транспорт кислорода кровью. Лишь небольшая часть О2 (2%), переносимого кровью, растворена в плазме. Основная часть транспортируется в форме непрочного соединения с гемоглобином. Молекула гемоглобина представляет собой сложный комплекс из белка глобина и одинаково построен у всех животных простетическая группа – гемм, содержащая Fe. Присоединение О2 к гемоглобину (оксигенация гемоглобина) происходит без изменения валентности железа, т.е. без переноса электронов, характеризующего истинное окисление. Гемоглобин, отдавший О2 – десоксигемоглобин. 1 г гемоглобина может связать 1,36 мл газообразного О2. 100 мл крови могут переносить примерно 21 мл О2 – это кислородная емкость крови. Оксигенация гемоглобина зависит от парциального давления О2 в среде, с которой контактирует кровь – кривая диссоциации оксигемоглобина (S- образная). Благодаря такой особенности венозная кровь, проходя легочные капилляры, оксиген ируется почти полностью, а артериальная кровь в капиллярах тканей эффективно отдает О2. Кривая диссоциации сдвигается вправо при ув температуры, при ув конц ионов Н+ в среде, которая в свою очередь зависит от давления СО2 (эффект Вериго-Бора). Поэтому создаются условия для более полной отдачи О2 оксигемоглобином в тканях, особенно там где выше интенсивность метаболизма, например в работающих мышцах. У чела каждые 100 мл крови отдают тканям 5-6 мл О2 (артерио-венозная разница по О2) и на ту же величину обогащ О2 в легких. Транспорт СО2 кровью. Хотя СО2 растворяется в жидкости лучше, чем О2, лишь 5% СО2 растворенного СО2 транспортируется кровью, остальная часть вступает в химические связи. В тканевых капиллярах СО2 образует угольную кислоту НСО3- СО2+Н2О -><- Н2СО3 -><-Н+ + НСО3- Направление реакции зависит от давления СО2 в среде: ускор под действием карбоангидразы (в эритроцитах). Осн часть СО2 транспортируется в виде гидрокарбоната НСО3-. Связыванию СО2 способствует уменьшение кислотных свойств (протонного сродства) гемоглобина в момент отдачи им кислорода – дезоксигенирование (эффект Холдейна). В легочных капиллярах происходит высвобождение части СО2, кот диффундирует в альвеолярный газ.Каждые 100 мл крови отдают в легких 4-5 мл СО2 – то же кол-во кот кровь получ в тканях (артериовенозная разница по СО2).
|
||||||||
Последнее изменение этой страницы: 2021-05-27; просмотров: 79; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.32.110 (0.008 с.) |