Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Правила построения таблицы истинности.Содержание книги
Поиск на нашем сайте
Таблица истинности - таблица, показывающая, какие значения принимает составное высказывание при всех сочетаниях (наборах) значений входящих в него простых высказываний. Логическое выражение - составные высказывания в виде формулы. Равносильные логические выражения – логические выражения, у которых последние столбцы таблиц истинности совпадают. Для обозначения равносильности используется знак «=». Правила построения таблицы истинности: 1. подсчитать количество переменных n в логическом выражении; 2. определить число строк в таблице по формуле m=2n, где n - количество переменных; 3. подсчитать количество логических операций в формуле; 4. установить последовательность выполнения логических операций с учетом скобок и приоритетов; 5. определить количество столбцов: число переменных + число операций; 6. выписать наборы входных переменных; 7. провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью. Заполнение таблицы: 1. разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»; 2. разделить колонку значений второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»; 3. продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа. Пример 1. Для формулы A/\ (B \/ B /\C) постройте таблицу истинности. Количество логических переменных 3, следовательно, количество строк - 23 = 8. Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов - 3 + 5 = 8. Пример. Для формулы A/\ (B \/ B /\C) постройте таблицу истинности.
Исчисление предикатов. Кванторные правила и ограничение переменных. Предикат - утверждение, которое содержит переменные, принимающие значение 1 или 0 (истинно или ложно) в зависимости от значений переменных. Множество, на котором предикат принимает только истинные значения, называется множеством истинности предиката Ip. Предикат называется тождественно-истинным, если на любом наборе аргументов он принимает истинное значение: P(x1,…,xn)=1 Предикат называется тождественно-ложным, если на любом наборе аргументов он принимает ложное значение: P(x1,…,x0)=0 Предикат называется выполнимым, если хотя бы на одном наборе аргументов он принимает истинное значение. Т.к. предикаты могут принимать только два значения (истинно/ложно или 0/1), то к ним можно применять все операции алгебры логики: отрицание, конъюнкция, дизъюнкция и т.д. Примеры предикатов Пусть предикат R(x,y): «» «x=y» обозначает отношение равенства, где x и y принадлежат множеству целых чисел. В этом случае предикат R будет принимать истинное значение для всех равных x и y. Другой пример предиката -- РАБОТАЕТ(x,y,z) для отношения «x работает в городе y в компании z». Еще один пример предиката -- НРАВИТСЯ(x,y) для «x нравится y» для x и y, которые принадлежат M -- множеству всех людей. Таким образом, предикатом является все то, что утверждается или отрицается о субъекте суждения. Операции над предикатами Рассмотрим применение операций алгебры логики к предикатам. Логические операции: Конъюнкция двух предикатов A(x) и B(x) -- предикат, который принимает истинное значение при тех и только тех значениях x из T, при которых каждый из предикатов принимает истинное значение, а ложное значение -- во всех остальных случаях. Множество истинности T предиката -- пересечение множеств истинности предикатов A(x) и B(x). Например: предикат A(x): «x -- чётное число», предикат B(x): «x делится на 5». Таким образом, предикатом будет выражение «x -- чётное число и делится на 5» или «x делится на 10». Дизъюнкция двух предикатов A(x) и B(x) -- предикат, который принимает ложное значение при тех и только тех значениях x из T, при которых каждый из предикатов принимает ложное значение и принимает истинное значение во всех остальных случаях. Множество истинности предиката -- объединение областей истинности предикатов A(x) и B(x). Отрицание предиката A(x) -- предикат, который принимает истинное значение при всех значениях x из T, при которых предикат A(x) принимает ложное значение и наоборот. Множество истинности предиката A(x) -- дополнение T′ к множеству T в множестве x. Пример 2 Пусть A(x): «Натуральное число x делится на 3»; B(x): «Натуральное число x делится на 4». Составим предикат: «Если натуральное число x делится на 3, то оно делится и на 4». Множество истинности предиката -- объединение множества истинности предиката B(x) и дополнения к множеству истинности предиката A(x). Над предикатами помимо логических операций можно выполнять квантовые операции: применение квантора всеобщности, квантора существования и т.д. Кванторы -- логические операторы, применение которых к предикатам превращает их в ложные или истинные высказывания. Квантор -- логические операции, которые ограничивают область истинности предиката и создают высказывание. Чаще всего используют кванторы: квантор всеобщности (обозначается символом ∀x) -- выражение «для всех x» («для любого x»); квантор существования (обозначается символом ∃x) -- выражение «существует x такое, что...»; квантор единственности и существования (обозначается ∃!x) -- выражение «существует точно одно такое x, что...». В математической логике существует понятие связывание или квантификация, которые обозначают приписывание квантора к формуле. Примеры применения кванторов Пусть -- предикат «x кратно 7». С помощью квантора всеобщности можно записать следующие ложные высказывания: любое натуральное число делится на 7; каждое натуральное число делится на 7; все натуральные числа делятся на 7; который будет иметь вид: для записи истинных высказываний используем квантор существования: существуют натуральные числа, которые делятся на 7; найдётся натуральное число, которое делится на 7; хотя бы одно натуральное число делится на 7. Запись будет иметь вид: Пусть на множестве x простых чисел задан предикат: «Простое число является нечетным». Поставив перед предикатом слово «любое», получим ложное высказывание: «Любое простое число является нечетным» (например, 2 является простым четным числом). Поставим перед предикатом слово «существует» и получим истинное высказывание: «Существует простое число, которое является нечетным» (например, x=3). Таким образом, предикат можно превратить в высказывание, если поставить перед предикатом квантор. Операции над кванторами Для построения отрицания высказываний, которые содержат кванторы, применяется правило отрицания кванторов: Рассмотрим предложения и выделим среди них предикаты, указав область истинности каждого из них:
|
||||
Последнее изменение этой страницы: 2021-04-12; просмотров: 157; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.244.244 (0.007 с.) |