Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие о токсинах и интоксикации↑ Стр 1 из 9Следующая ⇒ Содержание книги
Поиск на нашем сайте
Введение Понятие о токсинах и интоксикации Слово токсин (toxikon) в переводе с греческого означает яд для стрел. Очень много существует определений, что такое яды, начиная от Парацельса (1493-1541 г.г.): «Все есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным». С ним перекликаются слова великого поэта древности Рудаки: Что ныне снадобьем слывет, то завтра станет ядом И что ж? Лекарством этот яд опять сочтут больные. «Яд - мера, единство количества и качества действия химических веществ, в результате которого при определенных условиях возникает отравление» (Н.В. Саватеев, 1976). «Яд - химический компонент среды обитания, поступающий в количестве (реже - качестве) не соответствующем врожденным или приобретенным свойствам организма и, поэтому, несовместимый с его жизнью» (И.В. Саноцкий, 1970). С.В. Аничков трактует яды, как вещества, способные при взаимодействии на организм вызывать резкое нарушение нормальной жизнедеятельности, то есть отравление (токсический эффект) или прекращение жизни (летальный эффект). На наш взгляд термины - яд, отравление на сегодняшний день не совсем отражают проблемы, не полностью раскрывают цель и задачи ветеринарной токсикологии. Большинство при упоминании ядов или отравлении ассоциируют эти термины с экстремальными веществами и явлениями и больше ориентированно на человека. По отношению к животным, хотя и применяют эти термины, но правильнее говорить о токсинах и интоксикациях. Любое вещество для организма может быть индифферентным лекарством или токсином. Активность токсинов зависит от их химической структуры, свойств, дозы, путей поступления, превращения, длительности контакта состояния организма и внешней среды. На наш взгляд токсинами называется любые вещества вызывающие состояние интоксикации организма. Интоксикация является заболеванием животных и следствием нарушения взаимоотношения среды обитания и организмом, результатом токсикологического процесса. В самом деле токсикологическим действием обладают не только, как мы привыкли считать химические вещества, но и различные микроорганизмы проявляю свое агрессивное влияние на организм через токсины. Известны функции бактерий адгезивная - внедрение и прикрепление, инвазивная - размножение и распространение, токсигенная - выделение токсина. Первые две функции не вызывают заболеваний, только наступление третьей функции обеспечивает клинику заболеваний. В данном случае конечно не уместно употреблять яд бактерий или отравляющая функция, а говорим токсин, токсигенная функция, что оправдывает выбор терминов в большинстве случаев токсин, интоксикация. Классификация токсинов Чрезвычайно важным является правильная классификация токсинов, т.е. отнесение того или иного токсина к тем или иным группам по родственным определяющим признакам. Существуют различные виды классификаций, они конечно далеки от совершенства, но они необходимы для науки и практики, при оказании неотложной помощи. В первую очередь необходимо упомянуть о существовании деления токсинов, на экзогенные, поступающие извне с воздухом, водой, кормом через кожу и эндогенные - которые образуются в самом организме (адреналин, гистамин и др.). В основном принято классифицировать токсины по: 1) природе происхождения; 2) механизму действия на организм; 3) степени токсичности (классу токсичности); 4) производственной классификации. Классификация по механизму действия основана на избирательном действии токсинов, одни могут реагировать только на отдельные рецепторы и определенные компоненты клеток, другие на несколько рецепторов и многие компоненты клеток. При этом очевидно, что первая группа токсинов будет более агрессивной, нежели вторая. Классификация токсинов по степени токсичности очень трудоемкая, несовершенная и в большей степени подходит для пестицидов, ядохимикатов. В основу классификации положена среднелетальная доза (ЛД50), которая вызывает 50% гибели экспериментальных животных (чаще всего белых мышей, белых крыс) и вычисляется по специальной методике. Токсический процесс Действие веществ, приводящее к нарушению функций биологических систем, называется токсическим действием. В основе токсического действия лежит взаимодействие вещества с биологическим объектом на молекулярном, клеточном, органном и системном уровнях. В результате токсического действия веществ на биологические системы развивается токсического процесс. Токсичность проявляется и может быть изучена только в процессе взаимодействия химического вещества и биологических систем (клетки, изолированного органа, организма, популяции). Формирование и развитие реакций биосистемы на действие токсиканта, приводящих к её повреждению (т.е. нарушению её функций, жизнеспособности) или гибели называется токсическим процессом. Важнейшим элементом любого токсикологического исследования является изучение характеристики, закономерностей формирования токсического процесса. Поэтому токсикология - это наука о токсическом процессе. Формы, в которых проявляется токсический процесс, зависят также и от вида биологического объекта и его свойств. Внешнего потребителя токсикологических знаний (врача, эколога и т.д.) прежде всего, интересует токсичность рассматриваемого вещества, пагубные последствия вредного действия этого вещества на организм. Знание этого является основой профилактики и лечения токсикозов. Поэтому предмет науки токсикологии, призванной развивать и углублять наши представления о явлениях, возникающих при взаимодействии химических веществ и живых организмов, можно определить как науку о токсичности и токсическом процессе. Механизмы формирования и развития токсического процесса, его качественные и количественные характеристики, прежде всего, определяются строением вещества и его действующей дозой Внешние, регистрируемые признаки токсического процесса называются его проявлениями. Проявления токсического процесса определяются уровнем организации биологического объекта, на котором изучается токсичность вещества: - клеточном; - органном; - организменном; - популяционном. Если токсический эффект изучают на уровне клетки, то судят прежде всего о цитотоксичности вещества. Цитотоксичность выявляется при непосредственном действии соединения на структурные элементы клетки. Цитотоксичность изучают при: - использовании культур клеток для оценки токсичности новых веществ в опытах in vitro; - исследовании механизмов токсического действия веществ; - проведении процедуры биотестирования (выявления токсикантов) объектов окружающей среды и т.д. На клеточном уровне токсический процесс проявляется: - обратимыми структурно-функциональными изменениями клетки (изменение формы, сродства к красителям, подвижности и т.д.); - преждевременной гибелью клетки (некроз, апоптоз); - мутациями (генотоксичность). Если в процессе изучения токсических свойств вещества исследуют его повреждающее действие на отдельные органы и системы, то судят об органной токсичности соединений: нейротоксичности, гепатотоксичности, гемато- токсичности, нефротоксичности и т.д. Органную токсичность оценивают при: - изучении свойств (биологической активности, вредного действия) новых химических веществ; - диагностике заболеваний, вызванных химическими веществами. Со стороны органа или системы токсический процесс проявляется: - функциональными реакциями (спазм, падение артериального давления, учащение дыхания, усиление диуреза, лейкоцитоз и т.д.); - заболеваниями органа; - неопластическими процессами. На уровне целостного организма токсический процесс проявляться: - интоксикациями (болезнями химической этиологии); - транзиторными токсическими реакциями - быстро и самопроизвольно проходящими состояниями, сопровождающимися кратковременной утратой продуктивности животных (например, раздражение глаз, дыхательных путей; седативно-гипнотические состояния и т.д.); - аллобиозом - стойкими изменениями реактивности организма на воздействие физических, химических, биологических факторов окружающей среды (аллергия, иммуносупрессия, снижение резистентности и т.д.); - специальными токсическими процессами - развивающимися лишь у части животных из популяции, как правило, в особых условиях (действие дополнительных веществ; в определенный период жизнедеятельности организма и т.д.) и характеризующимися продолжительным скрытым периодом (канцерогенез, эмбриотоксичность, нарушение репродуктивных функций и т.д.). Токсическое действие веществ, регистрируемое на популяционном и биогеоценологическом уровне, может быть обозначено как экотоксическое. Экотоксический процесс на уровне популяции проявляется: - ростом заболеваемости, смертности, числа врожденных дефектов развития, уменьшением рождаемости; - нарушением демографических характеристик популяции (соотношение возрастов, полов и т.д.); - падением средней продолжительности жизни (хозяйственного использования) животных данной популяции. Знание множественности форм проявлений токсического процесса современным врачом, экологом, специалистом в области управления необходимо для: - правильной организации изучения токсичности новых химических веществ и интерпретации получаемых результатов; - выявления пагубных последствий действия токсикантов на животных и окружающую среду; - планирования и проведения мероприятия по выявлению и санации очагов химической опасности для отдельных животных, стад, животноводства в целом. Основные характеристики токсического процесса, выявляемого на уровне целостного организма Токсические процессы, выявляемые на уровне организма, можно отнести к двум основным группам: Интоксикация Из всех форм проявления токсического процесса наиболее изученной и в наибольшей степени привлекающей внимание врача является интоксикация. Механизмы формирования и особенности течения интоксикаций, зависят от строения ядов, их доз, условий взаимодействия с организмом. Выделяют следующие общие характеристики этой формы токсического процесса. 1. В зависимости от продолжительности взаимодействия химического вещества и организма интоксикации могут быть острыми, подострыми и хроническими. Острой называется интоксикация, развивающаяся в результате однократного или повторного действия веществ в течение ограниченного периода времени (как правило, до нескольких суток). Подострой называется интоксикация, развивающаяся в результате непрерывного или прерываемого во времени (интермитирующего) действия токсиканта продолжительностью до 90 суток. Хронической называется интоксикация, развивающаяся в результате продолжительного (иногда годы) действия токсиканта. Не следует путать понятие острой, подострой, хронической интоксикации с острым, подострым, хроническим течением заболевания, развившегося в результате контакта с веществом. Острая интоксикация некоторыми веществами (диоксины, галогенированные бензофураны, паракват и др.) может сопровождаться развитием длительно текущего (хронического) патологического процесса. 2. Периоды интоксикации. Как правило в течении любой интоксикации можно выделить четыре основных периода: период контакта с веществом, скрытый период, период разгара заболевания, период выздоровления. Иногда особо выделяют период осложнений. Выраженность и продолжительность каждого из периодов зависит от вида и свойств вещества, вызвавшего интоксикацию, его дозы и условий взаимодействия с организмом. 3. В зависимости от локализации патологического процесса интоксикация может быть местной и общей. Местной называется интоксикация, при которой патологический процесс развивается непосредственно на месте аппликации яда. Возможно местное поражение глаз, участков кожи, дыхательных путей и легких, различных областей желудочно-кишечного тракта. Местное действие может проявляться альтерацией тканей (формирование воспалительно-некротических изменений - действие кислот и щелочей на кожные покровы и слизистые; раздражающих веществ на глаза, кожу, слизистые желудочно-кишечного тракта, легкие и т.д.) и функциональными реакциями (без морфологических изменений - сужение зрачка при действии фосфорорганических соединений). Общей называется интоксикация, при которой в патологический процесс вовлекаются многие органы и системы организма, в том числе удаленные от места аппликации токсиканта. Причинами общей интоксикации, как правило, являются: резорбция токсиканта во внутренние среды организма, резорбция продуктов распада пораженных покровных тканей, рефлекторные механизмы. Если какой-либо орган или система имеют низкий порог чувствительности к токсиканту, в сравнении с другими органами, то при определенных дозовых воздействиях возможно избирательное поражение этого органа или системы. Вещества, к которым порог чувствительности того или иного органа или системы значительно ниже, чем других органов, иногда обозначают как избирательно действующие. Для их обозначения используют такие термины как: нейротоксиканты (например, психотомиметики), нефротоксиканты (например, соли ртути), гепатотоксиканты (например, четыреххлористый углерод), гематотоксиканты (например, мышьяковистый водород) и т.д. Такое действие развивается крайне редко, как правило, при интоксикациях чрезвычайно токсичными веществами (например, ботулоток- сином, аманитином). Чаще общее действие ксенобиотика сопровождается развитием патологических процессов со стороны нескольких органов и систем (например хроническое отравление мышьяком - поражение периферической нервной системы, кожи, легких, системы крови). В большинстве случаев интоксикация носит смешанный, как местный, так и общий характер. 4. В зависимости от интенсивности воздействия токсиканта (характеристика, определяющаяся дозо-временными особенностями действия) интоксикация может быть тяжелой, средней степени тяжести, и легкой. Тяжелая интоксикация - угрожающее жизни состояние. Крайняя форма тяжелой интоксикации - смертельное отравление. Интоксикация средней степени тяжести - интоксикация, при которой возможны длительное течение, развитие осложнений, необратимые повреждение органов и систем. Легкая интоксикация - заканчивается полным выздоровлением в течение нескольких суток. Транзиторные токсические реакции наиболее часто развиваются вследствие раздражающего и седативно-гипнотического действия токсикантов. Явления раздражения слизистой дыхательных путей, глаз, кожи отмечается при остром воздействии многими веществами - альдегидами, кетонами, галогенами и т.д. Не являясь заболеванием, это состояние, обращает на себя внимание, поскольку субъективно тяжело воспринимается и нарушает и снижает продуктивность животных. При действии наркотических средств, многих лекарств, органических растворителей проявляется их седативно- гипнотическое действие (опьянение). Транзиторные токсические реакции являются следствием только острого действия химических веществ. Увеличение дозы токсиканта приводит к превращению реакции в интоксикацию, например, раздражения - в воспалительный процесс и т.д. Токсические реакции могут угрожать жизни так и не трансформировавшись в болезнь (рефлекторная смерть от остановки сердечной деятельности и дыхания при ингаляции аммиака в высоких концентрациях). Аллобиоз. К числу аллобиотических состояний можно отнести: - умеренную иммуносупрессию и, как следствие, повышение чувствительности к инфекции; - аллергизацию организма и повышение чувствительности к токсикантам; - фотосенсибилизацию покровных тканей некоторыми веществами (псораленом; аминобензойной кислотой и т.д.); - изменение скорости метаболизма ксенобиотиков, в результате длительного приема веществ; - постинтоксикационные астении; - "доклинические" формы патологии и др. Аллобиотические состояния развиваются в результате острых, подострых и хронических воздействий, могут быть этапом на пути развития интоксикации (субклинические формы патологии различных органов и систем), следствием перенесенной интоксикации (остаточные явления) и, наконец, самостоятельной формой токсического процесса. Специальные токсические процессы. Развивается в результате острых, подострых и хронических воздействий ксенобиотиков. Как правило, в основе специальных токсических процессов лежит способность веществ воздействовать на генетический код.
Выделение через легкие Через легкие выделяются летучие (при температуре тела) вещества и летучие метаболиты нелетучих веществ. Основным механизмом выделения является диффузия токсиканта, циркулирующего в крови, через альвеолярно-капиллярный барьер. Переход летучего вещества из крови в воздух альвеол определяется градиентом концентрации или парциального давления между средами. Основными факторами, влияющими на элиминацию через легкие, являются: объем распределения ксенобиотика, растворимость в крови, эффективность легочной вентиляции и величина легочного кровотока. Определяющим показателем скорости диффузии газообразных и летучих соединений через альвеолярно-капиллярный барьер является разница их парциальных давлений в крови и альвеолярном воздухе. Давление пара пропорционально концентрации в крови и обратно пропорционально растворимости. В связи с этим у различных веществ с различной растворимостью, несмотря на одинаковую концентрацию, парциальное давление будет различно. Растворимость газов и летучих веществ в значительной степени влияет на легочную элиминацию. Чем меньше растворимость, тем быстрее выделяется вещество. При растворимости летучего ксенобиотика в крови близкой к 0 в нормальных физиологических условиях период полувыведения равен примерно 13 минутам. Величина объема вентиляции существенно сказывается на выведении веществ хорошо растворимых в крови (ацетон, этанол), а интенсивность кровотока в легких прежде всего влияет на скорость элиминации плохо растворимых в крови веществ (хлороформ, этилен, закись азота). Основываясь на этом, можно решить, с помощью каких препаратов (дыхательных аналептиков или стимуляторов сердечной деятельности) можно ускорить выведение тех или иных летучих и газообразных веществ из организма. Через лёгкие могут выделяться также летучие метаболиты, образующиеся при биотрансформации ксенобиотиков. Метаболизм некоторых органических соединений проходит с образованием С02. С помощью радиоактивной метки установлено, что углекислота является метаболитом бензола, стирола, хлороформа, четыреххлористого углерода, метилового спирта, этиленгликоля, фенола, диэтилового эфира, ацетона и многих других соединений. Порой до 50% меченного радиоактивным изотопом соединения выделяется в форме 14С02. Через легкие из организма выделяются летучие анестетики, летучие органические растворители, фумиганты. Другой способ легочной экскреции реализуется с помощью альвеолярно-бронхиальных транспортных механизмов. В просвет дыхательных путей секретируется жидкость, сурфактант, макрофаги, содержащие ксенобиотики. Секрет, а также адсорбированные на поверхности эпителия частицы аэрозоля, выводятся из дыхательных путей благодаря мукоцилиарному восходящему току. Более 90% частиц выводится подобным образом из дыхательных путей в гортань в течение часа после ингаляции. Из гортани вещества поступают в желудочно-кишечный тракт. Почечная экскреция Почки - важнейший орган выделения в организме. Через почки выводятся продукты обмена веществ, многие ксенобиотики и продукты их метаболизма. Выделение летучих органических ксенобиотиков с мочой незначительно. Масса почек чуть менее 0,3% массы тела, однако, через орган протекает более 25% минутного объема крови. Благодаря хорошему кровоснабжению, находящиеся в крови вещества, подлежащие выведению, быстро переходят в орган, а затем и выделяются с мочой. В основе процесса выделение через почки лежат три механизма: - фильтрация через гломерулярно-капиллярный барьер (все низкомолекулярные вещества, находящиеся в растворенном состоянии в плазме крови); - секреция эпителием почечных канальцев (органические кислоты, мочевая кислота, сильные органические основания, тетраэтиламмоний, метилникоти- намид и т.д.); - реабсорбция клетками эпителия (пассивная обратная диффузия: все жирорастворимые вещества, неионизированные молекулы органических кислот, активный транспорт: глюкоза, лактат, аминокислоты, мочевая кислота, электролиты и т.д.) Фильтрация осуществляется в почечных клубочках, при этом фильтрат преодолевает барьер, образованный эндотелием капилляров, формирующих клубочек, базальной мембраной и эпителием капсулы клубочка. Общая площадь поверхности более чем 1,7-2,5 миллионов клубочков обеих почек составляет около 2-3 м2. Диаметр пор базальной мембраны составляет у разных видов млекопитающих 2-4 нм; общая площадь пор: 4-10% от общей фильтрационной поверхности (в мышцах всего 0,1%). Поры между эндотелиаль- ными и эпителиальными клетками почечного клубочка равны 25-50 и 10-25 нм соответственно. Таким образом, почки работают как мощный ультрафильтр, задерживающий высокомолекулярные вещества и пропускающий все молекулы с малой и средней массой. Фильтрат содержит все составные части плазмы крови, имеющие размеры меньше, чем размеры фильтрующих пор базальной мембраны. Для молекул с молекулярной массой более 15000 возможность фильтрации существенно снижается. Белки плазмы крови (и связанные с ними низкомолекулярные вещества) фильтрации не подвергаются. Для фильтрации через клубочковый аппарат почки липидо- и водораство- римость веществ не является определяющим фактором. Движущая сила фильтрации складывается из артериального давления в гломерулярных капиллярах, минус гидростатическое давление в капсуле Боумена, минус коллоидно-осмотическое давление плазмы крови. Давление крови в гломерулярных капиллярах с помощью различных механизмов поддерживается на уровне 50-80 мм рт. ст. Эффективное фильтрационное давление в почках составляет около 8 мм рт. ст. Скорость фильтрации зависит от ряда факторов и может увеличиваться при: повышении давления крови в гломерулярных капиллярах; уменьшении содержания белка, особенно альбумина, в плазме крови; понижении гидростатического давления в капсуле Боумена увеличении числа функционирующих гломерул. В норме, благодаря наличию прегломерулярных анастомозов, существенная часть клубочков находится в неактивном состоянии. Их включение в процесс выделения существенно увеличивает интенсивность процесса фильтрации. Поскольку белки плазмы крови не подлежат фильтрации, через почки выделяются лишь вещества, не связанные с белками. Поскольку свободная и связанная фракции токсикантов в крови находится в состоянии динамического равновесия, как только свободная часть отфильтровывается, освобождается из связи с белками связанная фракция. Если связь прочная и высвобождение веществ затруднено процесс выделения токсиканта существенно затягивается во времени. Некоторые вещества практически полностью отфильтровываются в клубочках почек в течение нескольких часов. Канальцевая реабсорбция. Гломерулярный фильтрат с растворенными в нем токсикантами переходит из капсулы боумена по извитым канальцам, петле Генле, дистальному отделу канальцев в собирательные трубки. Длина каждого канальца равна 3-5 см, а общая площадь их поверхности - 7-8 м2. Первичная моча (фильтрат плазмы крови) распространяется по поверхности канальцев в виде тонкой пленки. Благодаря этому достигается высокая эффективность процесса диффузии через клеточный слой канальцев. По своим свойствам первичная моча ни чем не отличается от плазмы крови. Она содержит такую же концентрацию не связанных с белками токсикантов, как и плазма. Следовательно, между жидкостями не существует градиента концентрации веществ. В проксимальном отделе почечных канальцев происходит активная обратная резорбция из первичной мочи отфильтрованной воды, а также многочисленных химических веществ. В канальцах реабсорбируется до 99% воды из первичной мочи. Это приводит к очень значительному повышению концентрации растворенных в моче веществ, в том числе и токсикантов. Таким образом, формируется высокий градиент концентрации веществ между содержимым канальцев и кровью. Именно это является движущей силой обратной диффузии веществ из первичной мочи в кровь. Процессу свободной диффузии препятствует барьер, формируемый эпителием канальцев, межуточным веществом и эндотелием капилляров, оплетающих стенку канальцев. В целом свойства этого барьера аналогичны свойствам гистогематических барьеров других тканей. Закономерности, определяющие процесс проникновения токсикантов и их метаболитов через стенку канальцев подчиняется законам простой диффузии. Реабсорбции, прежде всего, подвергаются: а) жирорастворимые вещества; б) неионизированные молекулы водорастворимых веществ; в) вещества с низкой молекулярной массой. Проницаемость канальцевого барьера почти тождественна проницаемости слизистой кишечника, поэтому вещества, легко всасывающиеся при приеме через рот, затем трудно выводятся через почки, так как легко реабсорбируются из первичной мочи обратно в кровоток, а затем обратно - из кровотока в первичную мочу. Такая длительная тубулогломерулярная рециркуляция хорошо растворимых в липидах веществ приводит к существенному замедлению процесса их элиминации. Метаболизм ксенобиотиков во многом и предназначен для превращения жирорастворимых (плохо выводящихся из организма) веществ в водорастворимые, способные к выведению из организма, соединения. Выделение через почки слабых кислот и оснований существенно зависит от рН мочи. Как уже указывалось, вещества могут подвергаться реабсорбции в том случае, если молекула их не ионизирована. Из этого следует, что при подкислении мочи (путем назначения внутрь например, хлористого аммония) слабые основания (например, алкалоиды) будут переходит в ионизированную форму, хуже реабсорбироваться и лучше выводиться из организма. При подщелачивании мочи (например, путем приема соды), по той же причине, из организма лучше будут выводиться слабые кислоты (например, барбитураты). Помимо пассивной диффузии некоторые веществ в канальцах подвергаются активной реабсорбции. К числу таких веществ относятся, как правило, только естественные метаболиты: лактат, глюкоза, мочевая кислота, которые после их фильтрации в первичную мочу, попадают обратно в кровь. Канальцевая секреция. Многие органические вещества со свойствами слабых кислот (например, глюкурониды, салициловая кислота, пенициллин и др.) быстро переходят из крови в мочу. В основе быстрого переноса таких соединений в просвет почечных канальцев лежит активный транспорт. Транспортные системы находятся в проксимальном отделе почечных канальцев. Этот процесс направлен против градиента концентрации вещества и зависит от интенсивности обмена веществ. Он конкурентно ингибируется веществами с близким строением. Специфичность транспортных механизмов невелика. Условием переноса является наличие в молекуле групп - СООН или - SO3 и гидрофобного участка. Переносу подлежат соединения как простого, так и сложного строения. Связывание субстрата с молекулами-переносчиками осуществляется за счет ионных и водородных связей. Иногда процессу активного переноса (секреции) из крови в просвет канальцев данного вещества противодействует его простая диффузия в противоположном направлении. Например, мочевая кислота с одной стороны активно секретируется, а с другой - пассивно диффундирует обратно в кровоток. В почечных канальцах существует система активного выведения и веществ со свойствами слабых оснований: тетраэтиламмония, алкалоидов (морфина, хинина), имипрамина, мекамиламина и др. Механизмы активной секреции обнаружены у большинства позвоночных. Формы выделения металлов с мочой чаще всего неизвестны, но считают, что они выделяются не только в свободном, но и в связанном, состоянии. Так, например, свинец и марганец экскретируются как в ионной форме (осаждаемой), так и в виде органических комплексов. Комплексообразование способствует выделению металлов с мочой, на этом основана терапия интоксикаций разнообразными органическими комплексами (ЭДТА-№2 и др.). Выделение печенью В отношении ксенобиотиков, попавших в кровоток, печень выступает и как основной орган их метаболизма и как орган экскреции. Печень выделяет химические вещества в желчь, причем не только экзогенные, но и эндогенные, такие как желчные кислоты, желчные пигменты, электролиты. Выделяющиеся вещества должны проходить через барьер, образуемый эндотелием печеночных синусов, базальной мембраной и гепатоцитами. В процессе экскреции ксенобиотиков печенью осуществляется в два этапа: захват гепатоцитами и выделение в желчь. Оба этапа могу проходить либо в форме простой диффузии, либо активного транспорта. Механизм выделения определяется строением вещества. Захват гепатоцитами молекул липофильных веществ происходит путем простой диффузии, а органических анионов (оротовая кислота, рифампицин) и катионов (четвертичные аммониевые соединения), металлов (железо, кадмий), а также некоторых эндогенных веществ (билирубин, желчные кислоты) - путем активного транспорта. Захват гепатоцитами и билиарная экскреция высокомолекулярных веществ и белков осуществляется путем пиноцитоза. Билиарная экскреция неорганических ионов осуществляется путем диффузии. Активным транспортом экскретируются желчные кислоты, билирубин, стероиды, органические анионы, многие нейтральные органические соединения. Свободная диффузия токсикантов, связанных с белками плазмы крови, практически не возможна и они могут удаляться из плазмы путем пиноцитоза. Как известно в печени осуществляется метаболизм многих веществ. Ксенобиотики, попавшие в гепатоциты, распределяются между цитозолем и фиксируются различными протоплазматическими структурами. Часть соединений, в том числе и эндогенных (билирубин), находится в цитозоле в связанной с белками форме, что также имеет значение для их элиминации и детоксикации. Гепатоциты синтезируют специальные белки, ответственные за выведение ксенобиотиков из клеток, это так называемые мультиспецифичные переносчики органических анионов (MRP) и р-гликопротеины (p-GP). Оба типа белков первоначально были обнаружены в клетках резистентных к токсическому действию противоопухолевых препаратов. Позже было установлено, что их функция - активный транспорт ксенобиотиков через клеточные мембраны. MRP способны переносить лиганды, конъюгированные с глутатионом, глукуроновой кислотой, сульфатом. Таким образом, 2-я фаза метаболизма не только превращает вещества в более растворимые в воде, но и «подготавливает» их к активному транспорту за пределы клетки. p-GP транспортируют в основном липидорастворимые ароматические соединения с молекулярной массой 300-500 дальтон и амфифильные молекулы, содержащие катионную аминогруппу. В желчи в том или ином количестве обнаруживаются вещества, относящиеся практически ко всем классам химических соединений. В соответствии со значением коэффициента СЖ/СП (СЖ - концентрация в желчи; СП - концентрация в плазме крови) ксенобиотики могут быть разделены на три группы. Вещества, выделяющиеся печенью путем простой диффузии, могут оказаться в желчи лишь в концентрации, равной его концентрации в плазме крови (СЖ = СП). Так, для ионов Na+, K+, Cl- коэффициент СЖ/СП приблизительно равен 1,0. Для веществ, попадающих в гепатоцит, а затем и в желчь, с помощью механизмов активного транспорта, коэффициент СЖ/СП может быть существенно выше 1,0. Как правило, активно выделяются печенью амфифильные вещества, содержащие в молекуле как полярные, так и неполярные группы. У некоторых соединений, нашедших применение в клинической практике, значение коэффициента СЖ/СП очень велико (прокаинамид-этобромид - 118, хинин - 19,7). Из веществ, активно секретируемых в желчь, наиболее изученным является бромсульфолеин. У крыс при введении в дозе 5 мг/кг лишь 10% сохраняется в плазме крови, а 90% переходит в ткани, из них 80% - в печень, с последующим выделением в желчь. Некоторые химические вещества плохо проникают в гепатоциты и желчь. Для них коэффициент СЖ/СП меньше 1,0. Это например, инсулин, фосфолипиды, белки. Молекулярная масса соединения является важнейшим фактором, определяющим путь его элиминации. Существует порог, ниже которого располагаются вещества, выделяющиеся преимущественно через почки, выше - через печень. Значение порога достаточно условно, поскольку неодинаково у представителей различных видов: у крыс - 325 дальтон, у морских свинок - 400, у кроликов - 475. Попавшие в желчь вещества увеличивают ее осмотическое давление, что вторично способствует переходу в этот секрет воды и растворенных в ней ионов. Вследствие этого ксенобиотики, активно выделяющиеся в желчь, в той или иной степени обладают желчегонным действием. Скорость выведения некоторых веществ в желчь весьма велика. Например период полувыведения бензапирена печенью крыс после внутривенного введения составляет около 1,7 минуты, т.е. в течение 5 минут выделяется около 60% от введенной дозы. Однако это совсем не означает, что с такой же скоростью вещество выводятся из организма. Дело в том, что если с желчью выделяется липофильное соединение, то в просвете кишечника, оно подвергается быстрой обратной резорбции и по системе портальной вены вновь поступает в печень - развивается «внутрипеченочная циркуляция» ксенобиотика. Поэтому жирорастворимые вещества (в том числе и бензапирен) надолго задерживаются в организме. Их элиминация возможна лишь в результате биотрансформации в печени или других органах. Таким образом, путем билиарной экскреции из организма с калом могут выделяться только плохо растворимые в липидах соединения. Металлы, задерживающиеся преимущественно в печени, мало выводятся с мочой, а равномерно распределяющиеся в организме - покидают его двумя путями: быстро - через почки и более медленно - через желудочно- кишечный тракт. Другие пути выведения Важное значение имеет выведение токсических веществ с молоком. Как правило, в основе появления токсиканта в молоке лежит механизм простой диффузии. Этот способ экскреции практически не сказывается на продолжительности нахождения токсикантов в организме, но может лежать в основе появления отдельных признаков интоксикации у новорожденных животных и человека. С молоком у животных выделяются хлорированные углеводороды, главным образом, инсектициды (ДДТ, гексахлоран, 2,4-Д), тяжелые металлы (ртуть, селен, мышьяк), а также многие лекарственные препараты. Элиминация ксенобиотиков в молоко зависит от степени их персистентности в организме. Быстро элиминируемые, хорошо растворимые в воде ксенобиотики таким путем практически не выделяются. Жирорастворимые соединения с большим периодом полувыведения определяются в молоке порой в значительных количествах. Так элиминация хлорсодержащих инсектицидов в коровье молоко может составлять до 25% от введенного количества. Выделение ксенобиотиков может происходить и через кожу с секретом потовых, сальных, слюнных желез. Так выделяются из орган
|
||||
Последнее изменение этой страницы: 2021-04-05; просмотров: 109; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.154.133 (0.015 с.) |