Классификация силовых трансформаторов напряжения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация силовых трансформаторов напряжения



Трансформаторы напряжения различаются:

а) по числу фаз — однофазные и трехфазные;

Силовые трансформаторы выпускаются в основном в трехфазном исполнении. Для применения в однофазных сетях выпускаются однофазные трансформаторы.

б) по числу обмоток — двухобмоточные и трехобмоточные;

Трансформаторы имеют две или несколько обмоток, индуктивно связанных друг с другом. Обмотки, потребляющие энергию из сети, называются первичными. Обмотки, отдающие электрическую энергию потребителю, называются вторичными.

в) по классу точности, т. е. по допускаемым значениям погрешностей;

г) по способу охлаждения — трансформаторы с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);

д) по роду установки — для внутренней установки, для наружной установки и для комплектных распределительных устройств (КРУ).

е) по конструкции -силовые трансформаторы делят на два основных типа — масляные и сухие.

В масляных трансформаторах магнитопровод с обмотками находится в баке, заполненном трансформаторным маслом, которое является хорошим изолятором и охлаждающим агентом.

Сухие трансформаторы охлаждаются воздухом. Они применяются в жилых и промышленных помещениях, в которых эксплуатация масляного трансформатора является нежелательной. Трансформаторное масло является горючим, и при нарушении герметичности бака масло может повредить другое оборудование.

е) По назначению - трансформаторы разделяют на силовые общего и специального применения. Силовые трансформаторы общего применения используются в линиях передачи и распределения электроэнергии. Для режима их работы характерна частота переменного тока 50 Гц и очень малые отклонения первичного и вторичного напряжений от номинальных значений. К трансформаторам специального назначения относятся силовые специальные (печные, выпрямительные, сварочные, радиотрансформаторы), измерительные и испытательные трансформаторы, трансформаторы для преобразования числа фаз, формы кривой ЭДС, частоты и т.д.

Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного — понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие — для ее распределения между потребителями.

На схемах трансформатор обозначается следующим образом:

Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева), 2 и 3 — вторичные обмотки. Число полуокружностей в очень грубом приближении символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности).

При обозначении трансформатора жирной точкой около вывода могут быть указаны начала катушек (не менее чем на двух катушках, знаки мгновенно действующей ЭДС на этих выводах одинаковы). Применяется при обозначении промежуточных трансформаторов в усилительных (преобразовательных) каскадах для подчёркивания син- или противофазности, а также в случае нескольких (первичных или вторичных) обмоток, если соблюдение «полярности» их подключения необходимо для работы остальной части схемы. Если начала обмоток не указаны явно, то предполагается, что все они направлены в одну сторону (после конца одной обмотки — начало следующей).

В схемах трёхфазных трансформаторах «обмотки» располагают перпендикулярно «сердечнику» (Ш-образно, вторичные обмотки напротив соответствующих первичных), начала всех обмоток направлены в сторону «сердечника».

К основным параметрам трансформатора относятся номинальные мощность, напряжение, ток; напряжение короткого замыкания (КЗ); ток холостого хода (хх); потери хх и потери КЗ.

Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора.

Номинальными токами трансформатора называются указанные заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют отношением ее номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко (возникновения перемычки) другой обмотке в ней проходит ток, равный номинальному. Напряжение КЗ определяет падение напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора.

Для всех трансформаторов напряжение КЗ в % от номинального, вычисляется по следующей формуле

,

где — активная составляющая напряжения КЗ, зависящая от активного сопротивления трансформатора;  — реактивная составляющая напряжения КЗ, зависящая от реактивного (индуктивного) сопротивления трансформатора.

Ток холостого хода  характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора.

Потери холостого хода  и короткого замыкания  определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи.

Потери КЗ состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.).

 

Устройство и принцип действия трансформатора.

 

Трансформатор состоит из двух основных частей: магнитопровода (сердечника) и обмоток. Для уменьшения потерь от вихревых токов, возникающих при перемагничивании, сердечники собирают из отдельных тонких 0,3—0,5 мм) пластин специальной трансформаторной стали. Эта сталь характеризуется узкой петлей гистерезиса (см. разд. 3.2) и большим электрическим сопротивлением. Для уменьшения потерь от вихревых токов пластины изолируют друг от друга путем покрытия их изолирующими пленками.

Простейший однофазный трансформатор состоит из стального сердечника и двух обмоток — первичной и вторичной (рис. 7.1). Если к первичной обмотке трансформатора подвести переменное напряжение , то в ней появится некоторый ток , который создаст в сердечнике переменный магнитный поток Ф0.

Рис. 5.1

Этот поток по закону электромагнитной индукции наведет в обеих обмотках ЭДС индукции  и :

;

.

где ,  — число витков в первичной и вторичной обмотках соответственно.

Если приложенное напряжение

,

то в идеальном трансформаторе (без потерь) его первичная обмотка будет представлять собой чистую индуктивность и ток будет отставать по фазе от напряжения на :

,

а магнитный поток будет совпадать по фазе с создающим его током:

.

Тогда ЭДС  и  будут равны:

;

.

Поскольку для идеального трансформатора в соответствии со вторым законом Кирхгофа  и , то

 или ,     (*)

где k — коэффициент трансформации.

Мы видим, что отношение напряжений на вторичной и первичной обмотках трансформатора равно отношению чисел витков в этих обмотках. Отметим, что формула (*) выполняется точно только для идеального трансформатора или в режиме холостого хода.

Таким образом, трансформатор преобразует подведенное к нему напряжение в соответствии с отношением числа витков его обмоток. Векторная диаграмма идеального трансформатора показана на рис. 5.2.

Рис. 5.2

Преобразование электрической энергии в трансформаторе сопровождается потерями. В отличие от электрических машин трансформатор не имеет движущихся частей, поэтому механические потери при работе отсутствуют. Имеющиеся потери обусловлены явлением гистерезиса, вихревыми токами, потоками рассеяния магнитного поля и активным сопротивлением обмоток.

Как известно, ферромагнитные материалы состоят из небольших областей самопроизвольного намагничивания, которые называются доменами.

Магнитные моменты всех доменов по всему объему ферромагнетика ориентированы беспорядочно, поэтому результирующий магнитный момент всего ферромагнетика в отсутствие внешнего магнитного поля равен нулю. Если ферромагнетик поместить в магнитное поле, то магнитные моменты отдельных доменов получат преимущественную ориентацию в направлении поля. Чем больше индукция внешнего поля , тем сильнее эта ориентация, тем сильнее намагничивается ферромагнетик. При некоторой достаточной величине внешнего поля все магнитные моменты доменов оказываются ориентированными вдоль поля.

Если ферромагнетик поместить в переменное магнитное поле, создаваемое переменным током, то ферромагнетик будет циклически перемагничиваться с частотой переменного тока. При этом домены будут менять свою ориентацию с такой же частотой. При переориентациях доменов совершается работа из-за внутреннего трения доменов друг о друга.

Как известно, в ферромагнетике, подвергаемом циклическому перемагничиванию, магнитный поток связан с током зависимостью, выражаемой петлей гистерезиса. При этом при каждом перемагничивании сердечника затрачивается работа, пропорциональная площади петли гистерезиса. Эта работа вследствие внутреннего трения идет на нагревание сердечника.

Для уменьшения потерь на гистерезис сердечники трансформаторов изготавливают из специальной трансформаторной стали.

Вихревые токи, или токи Фуко, возникающие в проводниках, находящихся в переменных магнитных полях, создаются и в сердечнике трансформатора. Замыкаясь в толще сердечника, эти токи нагревают его и приводят к потерям энергии. Поскольку вихревые токи возникают в плоскостях, перпендикулярных магнитному потоку, то для их уменьшения сердечники трансформаторов набирают из отдельных изолированных друг от друга стальных пластин.

Потоки рассеяния в сердечнике трансформатора создаются той частью магнитного потока, которая замыкается не через магнитопровод, а через воздух в непосредственной близости от витков. Потоки рассеяния составляют около одного процента от основного магнитного потока трансформатора.

Активное сопротивление обмоток создает потери за счет активных токов, нагревающих обмотки. Для их уменьшения обмотки трансформаторов выполняют, как правило, из меди.

 

Режимы работы трансформатора.

 

Режим работы трансформатора, при котором его вторичная обмотка разомкнута, называют режимом холостого хода (трансформатор работает без нагрузки). Режим работы трансформатора, при котором во вторичную обмотку включена нагрузка, называют рабочим.

В режиме холостого хода основной магнитный поток в сердечнике Ф0 создает в первичной обмотке ЭДС самоиндукции, которая уравновешивает большую часть приложенного напряжения. Так будет до тех пор, пока вторичная обмотка разомкнута. Если во вторичную обмотку включить нагрузку, то в ней появится ток I2, возбуждающий в том же сердечнике свой магнитный поток Ф2, знак которого в соответствии с правилом Ленца противоположен знаку магнитного потока Ф1 создаваемому первичной обмоткой (рис. 5.3).

Рис. 5.3

В результате суммарный магнитный поток в сердечнике уменьшится, а это приведет к уменьшению ЭДС Е1 в первичной обмотке. Вследствие этого часть приложенного напряжения U1 окажется неуравновешенной, что приведет к увеличению тока в первичной обмотке. Очевидно, что ток в первичной обмотке будет возрастать до тех пор, пока не прекратится размагничивающее действие тока нагрузки. После этого суммарный магнитный поток восстановится приблизительно до прежнего значения Ф0.

При увеличении сопротивления вторичной обмотки уменьшаются ток I2 и магнитный поток Ф2, что приводит к возрастанию суммарного магнитного потока и, следовательно, к возрастанию Е2. В результате нарушится равновесие между приложенным напряжением U1 и ЭДС Е2: их разность уменьшится, а следовательно, уменьшится и ток I2 до такого значения, при котором суммарный магнитный поток вернется к прежнему значению.

Таким образом, магнитный поток в трансформаторе остается практически постоянным как в режиме холостого хода, так и режиме переменной нагрузки. Это свойство трансформатора называют способностью саморегулирования, т. е. способностью автоматически регулировать значение первичного тока I1 при изменении тока нагрузки I2.

Как уже говорилось, преобразование электрической энергии в трансформаторе сопровождается потерями. Коэффициент полезного действия трансформатора (к.п.д.) — это отношение отдаваемой активной мощности к потребляемой:

,                (**)

где Р1 — мощность, потребляемая из сети, Р2 — мощность, отдаваемая нагрузке. Таким образом, для практического определения к.п.д. трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку. Тогда  (поток рассеяния невелик), и мощность Р2 может быть вычислена по показаниям амперметра и вольтметра, включенных во вторичную цепь. Такой метод определения к.п.д. называется методом непосредственных измерений. Он весьма прост, но имеет два существенных недостатка: малую точность и неэкономичность. Первый из них обусловлен тем, что к.п.д. промышленных трансформаторов очень высок (до 99%), поэтому мощности Р2 и Р1 иногда мало отличаются по величине. В этом случае незначительные ошибки в показаниях приборов приведут к большим ошибкам в значении к.п.д. Неэкономичность этого способа связана с большим расходом электроэнергии за время испытания, так как трансформатор приходится нагружать до номинальной мощности. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим к.п.д. (например, в учебной практике).

На практике к.п.д. трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь. При этом исходят из того, что к.п.д. трансформатора может быть представлен в следующем виде:

,

где  — потери в стали (в сердечнике), а  — потери в меди (в обмотках). Потери в стали и потери в меди измеряют в опытах холостого хода и короткого замыкания соответственно.

В опыте холостого хода, в котором на первичную обмотку подают номинальное напряжение, а вторичную обмотку оставляют разомкнутой, определяют потери в стали, т. е. потери на гистерезис и вихревые токи. Так как при номинальном напряжении на первичной обмотке магнитный поток практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали для него являются постоянной величиной. Таким образом, можно считать, что в режиме холостого хода энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в цепь первичной обмотки. При этом, правда, не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток невелик, и потери от него также невелики. В этом опыте определяется также коэффициент трансформации k и ток холостого хода I01.

Если вторичную обмотку трансформатора замкнуть накоротко, а на первичную обмотку подать такое пониженное напряжение, при котором токи в обмотках не превышают номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора. В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания. Следовательно, ваттметр, включенный в цепь первичной обмотки трансформатора в этом опыте, покажет мощность, соответствующую потерям в меди ().

 

Паспортные данные трансформаторов.

 

Паспортные данные это та информация, которая записана на специальной табличке на корпусе устройства. Эти данные пишет завод изготовитель.

Все трансформаторы промышленного производства снабжены паспортом, содержащим следующие данные:

1. Отношение номинальных напряжений U 1H / U 2H;

2. Номинальную кажущуюся мощность S H;

3. Ток холостого хода I 10 % (10-14%);

4. Потери при холостом ходе P 10;

5. Напряжение при коротком замыкании ek (7-12 %);

6. Потери при коротком замыкании P 1 k .


 

Раздел 6

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 92; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.216.163 (0.031 с.)