Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет отопления, вентиляции, освещения, водоснабжения.

Поиск

 

6.6.1. Расчет отопления.

 

Теплопотери Qo (Вт) через наружное ограждение здания [18]:

Qo=qo ·VH ·(tв-tn), где  (13)

qo=0,75…0,64 Вт/(м3 ·оС) – удельная тепловая характеристика здания,

VH=2075 м3- наружный объем здания или его отапливаемого участка, м3,

tв=15 оС,

tn = -38 º С – расчетная наружная температура воздуха.

Qo=0,7 ·2075 ·(15+38)=76982 Вт.

 

Количества тепла Q в (Вт), необходимое для возмещения теплопотерь вентилирования помещения [18]:

Qв = qв · Vн ·(tв- tн), где (14)

qв = 0,9…1,5,

tн = -19 º С- расчетная наружная температура воздуха для вентиляции.

Qв = 0,9·2075·(15+19)=63495 Вт.

 

По суммарным теплопотерям находим тепловую мощность [18]:

Рк = (1,1…1,15) ·ΣQ·10-3 (15)

Рк = 1,1·(76982+63495) ·10-3=154,4 кВт.

 

Потребность в топливе Q (кг) на отопительный период можно приблизительно посчитать [18]:

Q = qy·V· (tв- tн), где     (16)

qy = 0,245 кг (м3 ·º С) – годовой расход условного топлива, затрачиваемого на повышение температуры на 1º С в 1 м3 отапливаемого помещения.

Q = 0,245 · 2075 ·(15+38) = 26946,8 кг = 27 т.

 

6.6.2. Расчет вентиляции.

 

В соответствии с санитарными нормами в помещении должна быть предусмотрена естественная вентиляция, осуществляемая через вытяжные каналы, шахты, форточки и фрамугу зданий.

Через местные отсосы должны удалятся пыль и газы, образующиеся при автоматической сварки и наплавке под слоям флюса длиной 250-300 мм [17].

Количество воздуха W(м3), удаляемого местным отсосом, определяем [17]:

W = k ·3√A, где   (17)

А = 200 А – при наплавке шатунных шеек сила сварочного тока, а при наплавке коренных шеек А = 260 А.

К = 12 – коэффициент для щелевого отсоса.

W = 12 ·3√200 = 70,2 м3,

W = 12 ·3√260 = 76,6 м3.

 

Производительность вентилятора [17]:

Wв = k3 · ΣW, где (18)

k3 = 1,3…2,0 – коэффициент запаса.

Wв = 2 ·(70,2+76,6)=294 м3/ч.

 

L 3
L 3

 

Рисунок 5.61 - Схема вентиляционной системы.

L1,L2,L3 – длина рукавов. L1 = 2 м, L2 = 2,5 м, L3 = 0,5 м.

Потери напора на прямых участках [18]:

Нпп = ωτ·li·pв·Vср2/dт, где (19)

ωτ – коэффициент, учитывающий сопротивление труб, ωτ=0,02,

Vср - средняя скорость воздуха на рассчитываемом участки воздушной сети (для прилегающих к вентилятору участков равен 8…12 м/сек),

li -  длина участка трубы,

dt = 0,1 м – принимаемый диаметр трубы.

 

1 Участок. L=2 м, Нпп.= 0,02·2·1,23·122/2/0,1=35,42 Па.

Рассчитываем местные потери Нм (Па) напора в переходах, коленах и др.:

Нм = 0,5·ψм·Vcр2 ·rв (20)

ψм(900) = 1,1

Нм = 0,5·1,1·122·1,23 = 97,4 Па

 

2 Участок. L = 2,5 м, Нпп.= 0,02·2,5·1,23·122/2/0,1=44,28 Па.

Нм = 0,5·1,1·122·1,23 = 97,4 Па.

 

3 Участок. L = 0,5 м, Нпп.= 0,02·0,5·1,23·122/2/0,1= 8,85 Па.

Нм = 0,5·1,1·122·1,23 = 97,4 Па.

Определяем суммарные потери потока на линн:

ΣНуч = Нв = 35,42+97,4·3+44,28+8,85=558 Па.

Рассчитываем мощность электродвигателя для вентилятора:

Pqв = Нв·Wв/(3,6·106·ηв· ηn) (21)

Pqв = 558·294/(3,6·106·0,9·0,45) = 0,1 кВт.

По номограмме выбираем центральный вентилятор серии Ц4-70 [17]. Обороты вентилятора nв=830 об/мин.


6.6.3. Расчет освещения производственного участка.

 

Проверочный расчет естественного освещения участка. При расчете принимается боковое освещение (через окна в наружных стенах).

суммарная площадь световых проемов рассчитывается [17]:

ΣSб = Sn·lmin· ηо/(100·ro·kl), где (22)

Sn – площадь пола помещения,

lmin = 1,5 – нормируемое значение при боковом освещении,

ηо = 1,5 – световая характеристика окна,

kl = 1 - коэффициент учитывающий затемнение окна,

ro = 0,3 – общий коэффициент светопропускания оконного проема с учетом его загрязнения,

rl = 3 – коэффициент учитывающий влияние отражения света.

 

По формуле 22 находим:

ΣSб = 200·1,5·1,25/(100·0,3·3) = 42 м2.

Суммарная площадь световых проемов (окон) равна 50 м2. Следовательно, естественное освещение соответствует расчетным нормам.

 

6.6.4. Расчет искусственного освещения.

 

Предусматривается комбинированная система освещения. Рекомендуемая общая освещенность 300 ЛК. При расчете высоты подвеса светильника используется рисунок 2.

Рисунок 6.6.2 – Схема расчета высоты подвеса светильников.

 

Высота подвеса светильника [18]:

Нп = Н – (hc+hp), где                                  (23)

Н = 8,4 м. – высота помещения,

hc = 1,2 м,

hp =1,2 м.

По формуле (23) находим:

Нп = 8,4-(1,2+1,2)=6 м.

Расстояние между центрами светильника «Универсаль» принимаем 3 м. При симметричном расположении светильников по вершинам квадрата их количество равно [18]:

nc=Sn/l2=220/9=25 шт.

 

 

Рисунок 6.6.3. - Тип светильника «Универсаль».

 

Рассчитываем световой поток Фл (мм), который должна излучать каждая лампа (при заданном количестве ламп) [18]:

Фл = К·Sn·Е/(nc· ηс · z), где   (24)

К = 14 – коэффициент запаса,

ηс = 0,45 – коэффициент использования светового потока,

z = 0,65 – коэффициент не равномерности.

 

Определяем: Фл = 1,4·220·300/(25·0,45·0,65)=12600 Лм.

Подбираем лампы типа НГ мощностью 750 Вт.[18]

Суммарная мощность ламп равна 18,75 кВт.[18]


6.6.5. Расчет расхода воды.

 

Расход воды на бытовые и хозяйственные нужды определяем [11]:

Qбн = 25·p·Кр, где (25)

25 – расход воды на одного человека,

р = 10 чел –число рабочих.

Qбн = 25·10·20=5000=5м3.

При мойке коленчатых валов в моечной машине расходуется 0,08 м3/ч воды [11]. При УЗУ расход воды для охлаждения магнитострикционного преобразователя составляет не более 10 л/мин. Для приготовления эмульсии воды берут из расчета 4 л в смену на один металлорежущий станок, поэтому расход воды составит [11]:

Qвд = 4·Sт/8·1000, где  (26)

Sт = 7 – принятое количество станков.

Qвд=4·7/8000=0,0035 м3/ч.

 

Месячный расход воды на производственные нужды [ 11 ]:

Qм = ΣQ·Фдо, где (27)

ΣQ – суммарный часовой расход воды.

Qм = (0,08+0,6+0,0035)·152 = 104 м3.


Конструкторская часть.

 

В процессе разработана установка (приспособление) для УЗУ коленчатых валов двигателя ЗИЛ-13О, которая монтируется на поперечных салазках [4] суппорта станка Общий вид показан на рис. 7.1.

Рисунок 7.1. Схема ультразвукового упрочнения.

1 обрабатываемая деталь;

2 рабочая часть инструмента;

3 концентратор (волновод);

4 ультразвуковой концентратор;

5 магнитострикционный преобразователь;

6 направляющий суппорт.


Схема процесса.

При обычном ультразвуковом упрочнении инструмент (рис 7.1.) под действием статической и значительной ударной силы, создаваемой колебательной системой, пластически деформирует поверхностный слой детали.[4]

Основные элементы акустического узла (головки) и их взаимосвязь:

Основным рабочим механизмом ультразвукового приспособления является его акустический узел, блок — схема которого показана на рис. 7.2.

Рисунок 7.2. Упрощенная схема акустического узла.

1 концентратор;

2 электромеханический преобразователь;

3 электрический генератор.

 

Основной функцией этого узла является приведение рабочего торца инструмента в колебательное движение. Необходимую для этого энергию он получает от электрического генератора 3. Эта энергия преобразуется в электромеханическом преобразователе 2 (рис 7.2) в энергию упругих колебаний, так что преобразователь или, как его часто называют, вибратор (излучатель) попеременно удлиняется и укорачивается. Однако амплитуда получаемых ультразвуковых колебаний обычно оказывается недостаточной для осуществления УЗУ, поэтому к торцу колеблющегося преобразователя присоединяется концентратор 1, представляющий собой акустический волновод, форма которого побирается таким образом, что бы на его выходном конце амплитуда колебаний увеличилась в нужной пропорции к амплитуде колебаний поверхностного преобразователя. Преобразователь и концентратор образуют колебательную систему, к выходному концу которой приложена акустическая нагрузка.

Итак, основным волновым каналом ультразвуковой энергии в акустическом узле является колебательная система: преобразователь - концентратор-нагрузка.

Отсюда следует, что главные требования предъявляемые к тому, чтобы получить в нем достаточно мощные ультразвуковые колебания и обеспечить беспрепятственное прохождение полезной акустической энергии от излучателя к нагрузке при минимальных попутных потерях энергии, неизбежных в реальных конструкциях. Чтобы на излучателе получить достаточно большую амплитуду колебаний, его делают резонансным, те. размер его в направлении распространения волны будет равным или, реже, кратным половине длины волны на выбранной частоте (см. рис. 7.3.). Иными словами, излучатель питают электрическим напряжением такой частоты, которая совпадает с собственной частотой механических колебаний излучателя в направлении распространения колебаний.

Концентратор тоже выполняют резонансным. При этом он становится как бы объёмным резонатором, настроенным на ту же частоту, что и излучатель, чем создаются оптимальные условия для отборов акустической энергии от излучателя (см. рис. 7.3.).

Рисунок 7.3.



Поделиться:


Последнее изменение этой страницы: 2020-03-26; просмотров: 172; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.202.60 (0.008 с.)