Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Оптические методы исследования квантовых точекСодержание книги
Поиск на нашем сайте
Оптические методы являются самыми мощными и универсальными методами исследования полупроводниковых квантовых точек. Это связано с тем, что они позволяют резонансно возбуждать и селективно исследовать те или иные состояния различных наноструктур. В ряде случаев только оптические методы применимы для исследования квантовых точек. Такая ситуация имеет место для нанокристаллов, выращенных в диэлектрических матрицах, а также помещенных в жидкости или полимеры. Линейные и нелинейные оптические методы открывают возможность изучения широкого круга параметров, эффектов и процессов в квантовых точках в стационарном и нестационарном режимах. С их помощью может быть получена информация об энергетической структуре элементарных возбуждений, например энергетические спектры электронной и колебательной подсистем, о взаимодействии элементарных возбуждений между собой и с внешними полями, о перенормировке энергетических спектров и возникновении коллективных возбуждений, а также о динамике элементарных возбуждений и релаксационных процессах. Кроме того, оптические методы позволяют осуществлять характеризацию и контроль качества квантовых точек, т.е. определять их химический состав и размеры, а также качество границ раздела и наличие дефектов. Взаимодействие электромагнитного излучения с электронами и дырками главным образом определяется выражением:
(12)
где m - масса свободного электрона, A = eA 0 - векторный потенциал световой волны с поляризацией e, p =− ih ∇ - оператор импульса заряженной частицы. Взаимодействие (12) приводит к межзонным и внутризонным переходам электронной подсистемы квантовой точки, в результате которых поглощаются или испускаются фотоны. Такими переходами обусловлено большинство оптических процессов, включая поглощение и рассеяние света, а также люминесценцию (рис. 23).
hщ - энергия поглощенных или излученных фотонов, hщ 1 и hщ 2 - энергии падающих и рассеянных фотонов Рисунок 23 - Схема межзонных электронных переходов в квантовой точке, иллюстрирующая процессы поглощения (a), люминесценции (b) и рассеяния света (c)
Для того чтобы выяснить, каким образом трехмерное пространственное ограничение модифицирует электронфотонное взаимодействие, рассмотрим матричный элемент (12). Для простоты будем использовать двухзонную модель полупроводника (зона проводимости с и валентная зона v) и предполагать, что в сферической квантовой точке, находящейся в режиме сильного конфайнмента, потенциальная яма для электронов и дырок имеет бесконечно высокие стенки. Необходимо различать два качественно различных типа оптических переходов. Первый из них, называемый внутризонным, имеет место, когда начальное и конечное электронные состояния принадлежат одной и той же зоне, например зоне проводимости. В этом случае матричный элемент взаимодействия (12) имеет вид: , (13)
где символами н 1 и н 0 обозначены наборы из трех квантовых чисел n 1, l 1, m 1 и n 0, l 0, m 0, характеризующие конечное и начальное состояния соответственно. В дипольном приближении (13) упрощается:
, (14)
где mc - эффективная масса электрона в зоне проводимости. Важной особенностью электрон-фотонного взаимодействия при внутризонных переходах является зависимость его матричных элементов от размера квантовой точки. Для режима сильного конфайнмента эта зависимость достаточно простая - матричный элемент пропорционален обратной величине характерного размера квантовой точки. Можно показать, что эта закономерность справедлива для квантовых точек любой формы[5]. Рассмотрим теперь в режиме сильного конфайнмента межзонные переходы, в результате которых образуется электрондырочная пара, т.е. электрон из валентной зоны переходит в зону проводимости. Матричный элемент взаимодействия (7), описывающий такой переход, может быть представлен следующим образом:
(15)
В дипольном приближении выражение (15) упрощается:
(16)
|
||||
Последнее изменение этой страницы: 2020-03-02; просмотров: 233; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.129.241 (0.006 с.) |