![]()
Заглавная страница
Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Системы координат и высот, применяемые в геодезии
Координатами называют числа, определяющие положение точки земной поверхности относительно исходных линий или поверхностей. Система географических координат . Географические координаты могут быть геодезическими и астрономическими. Г е о д е з и ч е с к и е координаты определяют положение точки на поверхности референц-эллипсоида. В этой системе координатами являются широта и долгота точки, а исходными линиями – меридианы и параллели (рисунок 2.2). Если широты и долготы точки отнесены к поверхности геоида, то они называются а с т р о н о м и ч е с к и м и координатами Система плоских прямоугольных координат Гаусса-Крюгера. Данную систему используют при крупномасштабном изображении значительных частей земной поверхности. В проекции Гаусса-Крюгера обеспечивается сохранение подобного изображения фигур при переходе с поверхности земного эллипсоида на плоскость. Возникающие при этом искажения в размерах фигур достаточно малы и легко учитываются. В этой системе поверхность земного эллипсоида разграничивают меридианами через 6 или 3о по долготе на зоны. Нумерацию зон ведут от нулевого (Гринвичского) меридиана на восток. Число зон с долготой 6о составляет 60, а с долготой 3о – 120. Земной эллипсоид вписывают в цилиндр так, чтобы плоскость экватора совместилась с осью цилиндра (рисунок 2.3).
Рисунок 2.3 – Зональная система прямоугольных координат Гаусса-Крюгера
Местная система плоских прямоугольных координат.Эту систему координат применяют для определения координат точек, на небольших участках земной поверхности принимаемых за плоскость (не более 20 х 20 км). На плоскости берутся две взаимно-перпендикулярные линии, которые называются о с я м и к о о р д и н а т: ось абсцисс XX и ось ординат YY (рисунок 2.4). Точка пересечения их О служит началом координат. Направление оси абсцисс обычно принимают совпадающим с направлением меридиана. Координатами любой точки М будут являться длины перпендикуляров, опущенных из точки М на оси координат. Счет четвертей ведется от первой до четвертой по ходу часовой стрелки.
Система полярных координат . Эту систему применяют при определении положения точек на небольших участках земной поверхности, обычно при топо-
графических съемках местности или при разбивочных работах в строительстве.
Эта система используется для определения положения искусственных спутников Земли и ракет в трехмерной и космической геодезии. Сущность ее сводится к обработке геодезических измерений без проектирования их на уровенную поверхность Земли. Полученная система координат (OXYZ) участвует в суточном вращении Земли, оставаясь неподвижной пространственная система относительно точек земной поверхности, и по тому удобна для определения положения объектов земной поверхности.
|
||||||
Последнее изменение этой страницы: 2020-03-02; Нарушение авторского права страницы infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.221.159.255 (0.007 с.) |