ТОП 10:

Генетические последствия радиации



Ионизирующее излучение вызывает мутации любого рода — от точечных замен до хромосомных аберраций и разрывов. Поместив источники невысокой радиации в лесу, исследователи доказали, что постоянное излучение убивает и повреждает растения, а это может иметь далеко идущие экологические последствия.

Ужасные ядерные бомбардировки Хиросимы и Нагасаки послужили источником сведений о долговременных последствиях воздействия радиации на людей. Для изучения этого вопроса в США и Японии была образована Комиссия по обследованию жертв атомной бомбардировки. Нелегко было следить за судьбой выживших на протяжении многих лет, определить их местонахождение относительно центра взрыва и рассчитать полученную ими дозу радиации. Особое внимание обращалось на четыре возможных нарушения: ненормальный исход беременности (рождение мертвого плода, серьезные врожденные пороки), смертность среди новорожденных, частота анеуплоидии (см. далее) половых хромосом детей и ненормальные варианты белков. Среди выживших жертв двух бомбардировок наблюдалось увеличение числа хромосомных повреждений и случаев заболевания раком, но, что удивительно, не очень высокое количество наследственных нарушений у потомства. Для того чтобы в полной мере оценить последствия радиации, нужно проследить за судьбой нескольких поколений и выявить рецессивные аллели или обнаружить эффект, вызываемый сразу несколькими повреждениями. Вместе с тем, казалось бы, доминантные мутации должны были сразу проявиться в следующем поколении, но таковых не наблюдалось. До сих пор нет подтверждений того, что радиоактивное воздействие атомных бомбардировок привело к появлению тяжелых наследственных заболеваний.

Тем не менее эксперименты на разных организмах, от бактерий до млекопитающих, доказывают, что различные виды облучения, вызванные применением атомного оружия, могут послужит причиной мутаций. Мутагенным воздействием обладает не только сам ядерный взрыв, но и различные частицы, переносимые на сотни и тысячи километров и выпадающие в виде радиоактивных осадков (содержащих, например изотоп стронций-90). Джеймс Кроу предположил, что по своим генетическим последствиям воздействие приблизительно 10 рентген на гонады каждого из 100 млн человек сравнимо с воздействием крупной аварии на атомной электростанции. И хотя его расчеты очень приблизительны, такая доза должна увеличить процент доминантных мутаций и мутаций, связанных с половыми хромосомами в значительное число раз (от 20 до 200), а это будет иметь серьезные последствия для населения.

Хотя радиация вызывает рак и другие нарушения у человека, подвергшегося ее воздействию, наибольшее беспокойство вызывает влияние радиации на клетки половых желез, в которых образуются сперматозоиды и яйцеклетки. Мутантные аллели, почти все вредоносные, могут передаться последующим поколениям и увеличить число генетически обусловленных заболеваний внутри вида. Конечно, после облучения мутантными становятся не все половые клетки. Мутации больше подвержены женские половые клетки, так как женщины рождаются уже с запасом будущих яйцеклеток. На протяжении всего репродуктивного периода они постоянно подвергаются воздействиям мутагенов. У мужчин сперматозоиды образуются постоянно, и хотя во время воздействия повышенной радиации мутации происходят чаще, после прекращения такого воздействия уровень мутаций новых сперматозоидов возвращается к норме.

Ядерное оружие по-прежнему представляет собой угрозу, хотя в последнее время люди все чаще испытывают беспокойство по поводу аварий на атомных электростанциях и их радиоактивных отходов. Среди самых известных — авария 1979 года близ Харрисберга (штат Пенсильвания), и авария 1986 года в Чернобыле. Они показали ошибочность хвастливых утверждений, что атомная энергетика — самый безопасный вид современных технологий. В ходе расследования инцидента в Харрисберге выяснилось, что низкий уровень радиации не так уж безвреден, как считалось ранее. Самое неприятное впечатление осталось от того рвения, с каким государственные чиновники стремились скрыть или приуменьшить размеры опасности радиации. Для проверки боеспособности войск в радиусе действия ядерного взрыва военное командование США намеренно организовало ряд учений, в которых воздействию радиации повергались тысячи солдат. Впоследствии центры по контролю заболеваний зафиксировали высокий уровень смертности от лейкемии среди участников этих учений. Лейкемия отмечалась также и у детей, родившихся в Юте во время наземных испытаний ядерного оружия в Неваде, причем частота заболеваний соответствовала графику испытаний. Обследования рабочих военных судостроительных заводов в Портсмуте показали, что из-за повышенного воздействия радиации, источником которой были атомные подводные лодки, увеличился уровень смертности и повысилась частота хромосомных повреждений. У рабочих военных судостроительных заводов Великобритании, доза облучения которых превышала нормативные 5 бэр в год, также наблюдалась повышенная частота хромосомных аберраций. После этого Национальная академия наук США объявила, что минимально допустимого уровня биологической опасности радиации не существует.

Как нам относиться к постоянно появляющимся в средствах массовой информации сенсационным рассказам о мутациях? К катастрофам на атомных электростанциях? К проблеме захоронения радиоактивных отходов, которые останутся радиоактивными на протяжении десятков тысяч лет? К тому, что весь город Порт-Хоуп в канадской провинции Онтарио заражен радиоактивным газом радоном, который образовался в результате захоронения отходов близлежащей компании по производству радиоактивных веществ? И хотя раковые заболевания чрезвычайно опасны, действие радиации не ограничивается мутациями в соматических клетках. Последствия мутаций половых клеток более непредсказуемы и потому значительно опаснее. Человечество подвергает себя серьезному риску непредвиденных генетических последствий, так как передаваемые по наследству мутации способны полностью изменить нас как биологический вид, и после какой-то стадии эти изменения будут уже практически необратимы. Существует ли на самом деле такая генетическая бомба с часовым механизмом, отсчитывающим последние мгновения до ужасной генной катастрофы? К сожалению, пока никто не может дать ответы на эти вопросы.

Хромосомные аберрации

Хромосомы содержат гены, расположенные в определенной последовательности. Фенотип организма зависит не только от тех или иных генов, но и от того, как они расположены относительно других генов. На первый взгляд это утверждение кажется странным. Если в ядре все хромосомы перемешаны, то, казалось бы, местоположение гена роли не играет; главное — то, что он присутствует. Поэтому генетики поначалу немало удивились, узнав, что перестройки хромосом могут привести к серьезным изменениям в экспрессии генов. Почему это происходит, во многом остается загадкой. О регуляции генов, упомянутой в гл. 11, мы знаем еще не очень много, но нам известно, что положительная или отрицательная регуляция генов осуществляется участками ДНК, расположенными от них на некотором удалении. Поэтому изменение местоположения гена может включить его в иную регуляторную систему. В любом случае перестановки последовательностей ДНК подобно их потерям и вставкам воздействуют на развитие половых клеток и на рост организма.

Хромосомные аберрации происходят вследствие физических разрывов хромосом и неправильного воссоединения их фрагментов. Делеция, или утрата участка хромосомы, происходит вследствие двух разрывов или отрыва конечного участка. Если ото рванный участок вставляется в обратной последовательности, мы имеем дело с инверсией:

 

Одновременный отрыв различных участков гомологичных хромосом и вставка одного из них позади другого может привести к делеции в одной хромосоме и к дупликации в другой:

И, наконец, оторванный участок может присоединиться не к той хромосоме, то есть происходит транслокация. (Иногда две негомологичные хромосомы меняются своими концами; в таком случае мы имеем дело со взаимной, или реципрокной, транслокацией.)

В клетке может измениться и количество хромосом. Иногда вместо нормальной диплоидной клетки с двойным (2n) набором хромосом получаются триплоидная (Зn) или тетраплоидная (4n) клетки. Но чаще происходит умножение или утрата отдельной хромосомы, и тогда образуется анеуплоидный организм с набором хромосом 2п + 1 или 2n — 1. Мы уже встречались анеуплоидией половых хромосом и узнали, что она является следствием нерасхождения хромосом. В таком случае в диплоидном наборе может недоставать одной хромосомы (моносомия) или присутствуют три гомологичные хромосомы (трисомия). Половые хромосомы обладают достаточным «запасом прочности», чтобы выполнять при этом свои основные функции. Анеуплоиды по половым хромосомам выживают и даже имеют относительно нормальный фенотип. Однако аутосомные хромосомы имеют настолько сложную и хрупкую структуру, что их необычное распределение практически во всех случаях приводит к летальному исходу. Даже если некоторые анеуплоидные эмбрионы и выживают во время развития, то обладают явно выраженными уродствами.

Полиплоидия широко распространена среди растений, которые, по-видимому, не столь чувствительны к необычному набору хромосом. Есть три-плоидные растения вроде бананов. Большинство новых сортов растений тетраплоидны, то есть они произошли вследствие удвоения всего генома. При скрещивании близких растений часто возникают тетраплоиды, имеющие по одному полному диплоидному набору хромосом от каждого родительского вида. Впоследствии новые сорта могут утрачивать некоторые хромосомы, и поэтому их набор хромосом уже не соответствует точной комбинации родительских наборов.

Одно из противоречий научного прогресса заключается в том, что методы предродовой и послеродовой терапии, благодаря которым удалось снизить смертность среди новорожденных, одновременно увеличили вероятность рождения детей с наследственными дефектами. Многие из них происходят вследствие хромосомных аберраций.

Большинство страдающих бесплодием имеют хромосомные дефекты. Преждевременное прекращение беременности происходит приблизительно у 20% женщин, и в половине этих случаев у плода имеются хромосомные нарушения. По меньшей мере у 0,5% новорожденных отмечаются очевидные нарушения хромосом; многие нарушения настолько незаметны, что их нелегко распознать при современном уровне диагностики. По приблизительным оценкам, сегодня более чем у 10% детей имеются нарушения, которые требуют основательного лечения или хирургического вмешательства еще в младенчестве или в раннем детском возрасте. В это число не входят прекращения беременности на самой ранней стадии развития эмбриона, когда некоторые женщины даже не догадываются, что были беременны. Так что хромосомные аберрации отнюдь не редки, и они служат серьезным источником беспокойства и страданий.

Хромосомы человека

Под электронным микроскопом хромосомы человека выглядят как свитые в многочисленные петли куски толстой веревки. Каждая хромосома представляет собой длинную, непрерывную цепь ДНК, в скрученном виде окруженную особыми белками и молекулами РНК. Поначалу исследования хромосом {цитогенетика) ограничивались изучением хромосом растений и насекомых с малым числом крупных хромосом. У млекопитающих обычно бывает наоборот — большое количество небольших хромосом. С 1920-х до середины 1950-х годов было распространено мнение, что у человека 48 хромосом. (Когда Д. Сузуки, один из авторов этой книги, учился в колледже, ему говорили, что у кавказцев 48 хромосом, а мужчины — представители желтой расы имеют хромосомный набор Х0 и 47 хромосом!). Но в 1956 году шведские ученые Трийо и Леван провели ряд исследований и обнаружили, что в самых хорошо подготовленных клетках при самых благоприятных условиях всегда наблюдается 46 хромосом. С тех пор общепризнанным стало число 46. У приматов количество хромосом сравнимо с количеством хромосом у человека, у макак-резусов их 42; у шимпанзе, горилл и орангутанов — 48.

В гл. 5 мы уже говорили, что для получения кариотипа раствор белых кровяных клеток обрабатывают колхицином. На четких фотографиях видны различные хромосомы, которые можно распределить по порядку. Всем хромосомам человека присвоены порядковые номера, начиная с самой длинной (рис. 14.2). После длины самая заметная характеристика — положение центромеры, то есть участка, в котором хроматиды сцеплены между собой и к которому присоединяются нити веретена. Хромосомы с центромерами, расположенными приблизительно посередине, называются метацентрическими, как, например, первые три хромосомы человека. У акроцентрических хромосом центромеры расположены ближе к одному из концов и делят их на две неравных части, или «плечи» (как, например, хромосомы с 16 по 18). Бывают также телоцентрические хромосомы с центромерами практически на конце, у человека таких нет. У некоторых хромосом имеются сателлиты, небольшие участки, присоединенные к основной хромосоме такой тонкой нитью, что ее почти не видно.

Более отчетливое изображение можно получить посредством окрашивания. При окрашивании раствором Гимза становятся видны кольцевые полосы, или Гимза-диски; под действием других красителей появляются флуоресцентные полосы. Такие процедуры помогают опознать хромосомы среди других и выявить в них аберрации. В 1971 году на международной конференции в Париже была принята единая система определения и обозначения участков хромосом по их полосам

 

Рис. 14.2. Хромосомы человека со стандартным рисунком Гимза-дисков. Длинные и короткие плечи обозначают бук вами p u g соответственно. Каждое плечо поделено на пронумерованные сегменты, определяемые располо-жени-ем Гимза-дисков. Отсчет сегментов начинается с центромеры. Конец длинного плеча первой хромосомы, например, обозначается как Iq44, а следующий сегменткак Iq43

Анеуплоидия

Богатый источник материала для исследований хромосомных аберраций — выкидыши в течение первых недель развития, так как у них насчитывается в 50—100 раз больше хромосомных нарушений, чем у новорожденных. Наиболее частое нарушение — трисомия, то есть наличие одной лишней хромосомы. Среди выкидышей встречаются случаи трисо-мии по каждой из 23 хромосом, но моносомия, за исключением Х0, не встречается, так как это настолько тяжелое нарушение, что эмбрион погибает на самой ранней стадии. Плод выживает только в случае трисомии трех аутосомных хромосом — 12-й, 18-й и 21-й; при этом каждый случай характеризуется своим синдромом. Самый известный случай — трисомия по 21-й хромосоме, или синдром Дауна, при котором у ребенка развиваются характерные внешние черты, и людей с такими чертами сейчас довольно часто можно встретить в общественных местах. Обычно они страдают от замедленного умственного развития и потому становятся пациентами психиатрических заведений. Но в последнее время их все чаще оставляют дома, так как при надлежащей заботе они вполне самостоятельны и способны к обучению. Как правило, они добродушные, спокойные и не доставляют хлопот окружающим.

Нерасхождение 21-й хромосомы во многом зависит от возраста матери. Исследования показали, что среди 18-летних матерей только одна из 2500 рожает ребенка с болезнью Дауна, тогда как среди 45-летних это соотношение составляет один случай на 40—50, то есть вероятность повышается в 50 раз. В одном исследовании из 1700 случаев трисомии по 21-й хромосоме около 40% больных детей родились от матерей старше 40 лет, хотя в целом от таких матерей рождается 3,5—5% всех нормальных детей. Такая зависимость нарушения от возраста пока не нашла своего объяснения.

Становится очевидным, что хромосомные аберрации — основные источники наследственных заболеваний человека. Вот почему биологи стремятся понять механизм аберраций и разработать надежные методы их диагностики, если пока их невозможно предотвратить. Учитывая темпы развития хромосомного анализа, следует ожидать появления более совершенных методов диагностики в ближайшем будущем. В Северной Америке уже широко применяется хромосомный анализ плода, позволяющий определить дефект на ранней стадии развития, когда беременность еще можно прервать. Во многих странах принято всех будущих матерей старше 35 лет обследовать на предмет возможных хромосомных нарушений.

Дупликация и делеция

Дупликации и делеции больших участков хромосом почти всегда летальны, как и большинство мутаций. Если плод и выживает, то он характеризуется серьезными нарушениями в развитии. Самый известный пример — утрата части короткого плеча пятой хромосомы. Младенцы, гетерозиготные по этому нарушению, демонстрируют признаки так называемого синдрома cri-du-chat («крик кошки»); они страдают от сильных физических и психических дефектов и постоянно издают звуки, похожие на мяуканье. Другие синдромы сопоставлены с потерями сегментов других хромосом, в том числе 4-й и 18-й. Если от нарушений в развитии страдают гетерозиготы, то гомозиготам грозят еще большие нарушения — вплоть до летального исхода. Среди людей гомозиготы по таким недостаткам неизвестны, а у мушек-дрозофил они почти по всем делециям погибают. Это говорит о том, что практически любой ген играет важную роль и что для сохранения жизнеспособности необходимы две копии гена.

В ходе процесса, при котором образуются делеции, могут случаться и дупликации. Единственные установленные случаи дупликации у людей затрагивают гетерохроматин, о котором нам мало известно, и гены рибосомных РНК, которые, правда, почти никогда не подвергаются дупликации. Возможно (хотя это только предположение), что у некоторых людей имеются незначительные дупликации, которые внешне никак не выражаются и которые нельзя выявить традиционными методами цитогенетики.

Самые примитивные организмы имеют гораздо меньшее число генов по сравнению с растениями и животными, и естественно предположить, что ранние формы жизни имели еще меньшее число генов. Дупликации увеличивают количество генетического материала и потому важны для усложнения генома, так как в процессе дупликации клетка сохраняет свои обычные гены и получает одну или несколько дополнительных копий. В ходе последующих мутаций эти копии могут постепенно меняться, пока не приобретут иные функции.

Произошедшая дупликация позволяет и далее увеличивать количество генов. Представим еще раз гены как последовательности букв:

Когда спариваются две хромосомы с дупликацией, они могут образовать неравномерную пару:

 

 

И в таком случае получаются одна хромосома без дупликации и одна хромосома с тройной последовательностью (трипликация). Таким образом, при асимметричном спаривании хромосом генетический материал увеличивается и может накапливаться до бесконечности.

При кроссинговере в области дупликации может произойти еще одна дупликация:

Инверсии

Многие из нас слышали о супругах, которым никак не удается завести детей из-за прерванных беременностей и выкидышей. Это происходит, если один из партнеров гетерозиготен по инверсии или транслокации. Рассмотрим сначала инверсии. Инверсии можно опознать по изменившемуся рисунку полос. Они называются перицентральными, если инвертированная последовательность включает центромеру, или парацентральнъши, если не содержит центромеру. Генетические последствия этих двух типов различны. Во время мейоза гомологичные хромосомы образуют пары, и при этом они выстраиваются напротив друг друга с поразительной точностью. Какие бы силы их ни удерживали, хромосомы изгибаются и поворачиваются так, чтобы встать точно напротив комплементарной последовательности. У гетерозиготного по инверсии человека, который имеет одну нормальную и одну инвертированную хромосому, две гомологичные хромосомы образуют характерную инверсионную петлю, выравнивающую сегменты между точками инверсии:

Если кроссинговер происходит внутри инверсионной петли, то получившиеся гаметы могут оказаться дефектными. При гетерозиготной парацентральной инверсии кроссинговер удерживает вместе две центромеры и оставляет ацентрический отрезок без центромеры. В конце I стадии мейоза этот фрагмент теряется, тогда как две связанные мостом центромеры продолжают оставаться вместе. В конце II стадии мейоза обычные хроматиды, не задействованные в кроссинговере, расходятся. Мост при этом остается, и если он разрывается, то образуется ядро дефектной клетки, от которой никогда не будет потомства. Поэтому в ядрах функциональных клеток имеются только те хроматиды, которые не подвергались кроссинговеру. Так инверсии выборочно устраняют хромосомы в состоянии кроссинговера.

Перицентральные инверсии после кроссинговера ведут себя по-другому: хроматиды могут отделиться друг от друга, но они подвергаются дупликации, и их концы повреждаются. Гаметы с такими хроматидами выживают с очень небольшой вероятностью. Если у одного партнера имеется большая инверсия хромосомы, которая часто подвергается кроссинговеру, то у супружеской пары нарушения плода происходят гораздо чаще обычного или рождаются дети с наследственными дефектами.

Транслокации

Транслокации — частая причина наследственных нарушений, которую можно заметить в кариотипе. Обычно их переносят гетерозиготы, имеющие одну нормальную хромосому и одну хромосому с транслокацией.

Фенотипически такие носители нормальны, так как у них две копии гена, пусть даже одна имеет другую последовательность.

При расхождении хромосом образуется некоторое количество ненормальных гамет. Хромосомы образуют пары в характерной крестообразной конфигурации, когда гомологичные регионы расположены напротив друг друга:

Второй закон Менделя применим и здесь. Две пары центромер распределяются независимо двумя разными способами с равной вероятностью. Если к одному полюсу переходят центромеры с одной стороны креста, то образуются гаметы с дупликацией или делецией. Если же к одному полюсу переходят центромеры с разных сторон, то образуется два вида гамет: одни с нормальным набором хромосом, другие — с разными дополняющими друг друга участками транслокации.

Поскольку партнерами гетерозигот по транслокации обычно бывают люди с нормальными хромосомами, то у пары с равной вероятностью могут образоваться зиготы четырех типов: нормальные, нормальные с транслокацией (носитель) и два вида ненормальных (с дупликацией и делецией). Если Дупликация и делеция довольно большие, то развитие зародыша, скорее всего, прервется; если же младенец родится, то у него могут быть нарушения. Например, синдром Дауна может проявиться не только в результате нерасхождения, но и из-за транслокации. Один из типов гамет гетерозигот слишком дефектен, поэтому вероятность распределения признаков в потомстве такова: один нормальный, один носитель, один с синдромом Дауна. Поэтому в случае обнаружения признаков транслокации генетический консультант предупреждает пару о возможных осложнениях и сообщает им о высоком риске рождения ребенка с наследственными нарушениями.


Глава пятнадцатая ЭВОЛЮЦИОННАЯ ГЕНЕТИКА

Генетик Феодосии Добржанский однажды сказал: «Все в биологии имеет смысл только в свете эволюции». Все биологи, объективно взирающие на окружающий мир, соглашаются с тем, что огромное разнообразие видов на нашей планете появилось в результате естественных процессов, которые мы называем эволюцией. Почему столько людей убеждены в истинности эволюционной теории? Некоторые циники и религиозные критики сравнивают их убеждение с верой в Бога и утверждают, что это своего рода научная религия. Однако вера в религиозном понимании и вера в научную теорию отличаются друг от друга, и главное их отличие заключается в том, как устроена наука.

Наука не имеет дело с истиной. Она имеет дело с гипотезами, правильность которых можно оспорить. Ученый начинает с того, что замечает ряд необъяснимых явлений и старается найти им рациональное толкование. Обычно научное рассуждение строится по образцу, который философ Н. Р. Хэнсон назвал ретродукцией: «Вот необъяснимое явление; но это явление станет объяснимым, если X верно; следовательно, я заявляю, что X верно». Формулировка подходящего объяснения требует некоторого скачка воображения, и по этой причине в науке есть доля творчества, как и в любом другом виде человеческой деятельности. Однако при этом наука накладывает ряд ограничений на то, что можно считать X. Объяснение X должно принадлежать к сфере обычной физической реальности. Ученый не может ссылаться на сверхъестественные силы, такие как Бог, демон или какого-либо рода магия. Самое главное ограничение состоит в том, что гипотеза должна быть проверена эмпирически, то есть в ходе опытов и экспериментов, она должна предсказывать наблюдаемые последствия. После формулировки гипотезы ученые приступают к эмпирической проверке предсказываемых ею последствий.

Далекие от науки люди часто полагают, что посредством опытов и экспериментов ученые стараются найти подтверждения своей гипотезы. На самом деле они стараются доказать, что она ложна. Конечно, в глубине души ученые надеются, что они правы, но хитрость логики состоит в том, что этого они доказать никогда не смогут. Допустим, имеется некоторая гипотеза Г, которая предсказывает последствия П; суть ее выражена формулой «Если Г, то П». Мы проводим опыты, чтобы удостовериться в наличии П. Предположим, что мы наблюдаем П. Можно ли на основании этого построить следующее умозаключение: «Если Г, то П; П верно, значит, верно и Г»? Нет, нельзя. Такая схема умозаключения ошибочна, ведь нельзя по следствию судить о причине. (Попробуйте рассуждать следующим образом: «Если солнце состоит из горящего навоза, то оно должно быть горячим. Солнце горячее, следовательно, оно состоит из горящего навоза».) Но предположим, что мы не наблюдаем П. Тогда мы с полной уверенностью можем утверждать: «Если Г, то П; П не верно, значит, Г не верно». Как говорил философ Карл Поппер, гипотеза должна быть фальсифицируемой, то есть она должна предсказывать такие последствия, на основании проверки которых ее можно опровергнуть. Если результаты эксперимента не согласуются с гипотезой, то ее либо отвергают, либо подвергают пересмотру. Если результаты согласуются с гипотезой, то она на некоторое время становится рабочей. Из этого вовсе не следует, что она верна, просто на данный момент она предлагает самое подходящее объяснение фактам. По мере выдвижения все новых и новых гипотез мы совершенствуем их и составляем общую картину, то есть разрабатываем теорию — более широкую систему идей, объясняющих реальность. Конечно, и теории не являются истиной в последней инстанции, они лишь предлагают более правдоподобные объяснения большого количества явлений. К такого рода теориям относится и теория эволюции. Она выдержала многочисленные испытания и доказала свою надежность. Но мы не должны забывать, что теория эволюции рассматривает два вопроса: 1) происходит ли эволюция (правда ли то, что современные виды возникли таким образом?) и 2) как она происходит? Сомневаться в том, что эволюция происходит, было бы отрицанием почти всей современной биологии, как правильно подметил Добржанский. За последние 150 лет накоплены горы свидетельств и экспериментальных подтверждений, которые подкрепляют (точнее, которым не удается опровергнуть) идею происхождения одних видов от других. Другой вопрос эволюционной теории — о механизме эволюции — не решен до сих пор, и о нем идут многочисленные споры в современной науке. Правда, почти никто не сомневается в том, что эволюция зависит от естественного отбора, как объясняется далее. Авторство этой идеи приписывается Чарльзу Дарвину и Альфреду Уоллесу, хотя некоторые ученые и до них высказывали подобные мысли. Оба естествоиспытателя много путешествовали, наблюдали за разнообразием природы нашей планеты, исследовали животных, описывали экзотические растения и окаменелости. В потрясающем многообразии им удалось разглядеть сходство и общие законы. Дарвин проиллюстрировал общие принципы на примере передней конечности позвоночных, имеющей у всех одинаковое строение — длинную кость в верхней части, две в нижней, несколько костей в запястье и пять пальцев, состоящих из нескольких коротких костей:

Что может быть более любопытным, нежели то, что рука человека, предназначенная для хватания, передняя конечность крота, предназначенная для рытья, нога лошади, плавник дельфина и крыло летучей мыши устроены по одному образцу и состоят из схожих костей, расположенных в похожем порядке?

Такое сходство органов, выполняющих разные функции, но имеющих общую схему строения, называется гомологией. И до Дарвина анатомы подмечали сходство в строении органов разных животных, но объясняли их с точки зрения традиционной религии, хотя некоторые предполагали нечто вроде эволюции. Дарвин и Уоллес объяснили гомологию тем, что разные животные происходят от одного общего предка. Они предположили, что первоначальная группа организмов разделилась на несколько популяций, оказавшихся в разных средах обитания. В каждой популяции, вероятнее всего, выживали и давали потомство организмы с наследуемыми признаками, позволявшими им легче приспособиться к среде обитания. Так происходил естественный отбор приспособленных организмов. За множество поколений случайные изменения в геноме привели к появлению новых признаков, а естественный отбор закрепил наиболее полезные из них. Так произошла прогрессивная дивергенция (расхождение) видов и появились современные формы, такие как человек, летучая мышь и дельфин.

Доказательства эволюции

Доказательства того, что разные организмы действительно произошли от общего предка посредством постепенного изменения, поступают из разных источников. Пожалуй, одно из самых сильных доказательств — гомология на всех уровнях биологической организации. Исследования разных групп организмов предоставили множество примеров гомологии видимых структур, таких как конечности или череп. Причем благодаря окаменелостям гомологичное строение органов можно проследить не только у современных, но и у вымерших животных. Эти окаменелости можно опознать как предков некоторых современных видов, как переходное звено от одного вида к другому, подтвердив тем самым родство современных форм жизни. Собрав вместе всю информацию о той или иной группе животных, можно построить так называемое филогенетическое дерево, то есть схему, показывающую, как современные виды произошли от своих далеких предков. Определить возраст окаменел остей можно по возрасту геологических пород, в которых они найдены. Так мы получаем представление о временной шкале эволюции.

В недавнее время благодаря технике секвенирования белков и ДНК удалось получить свидетельства гомологии и на молекулярном уровне. Во-первых, сразу бросается в глаза сходство генов разных организмов: если в каком-то организме имеется ген, выполняющий определенную функцию, то в другом организме эту функцию выполняет, скорее всего, похожий ген. (Это открытие подтолкнуло к исследованиям модельных организмов, поскольку процессы, происходящие в модельном организме, по всей вероятности, характерны и для других схожих организмов.) Во-вторых, гомологичные гены имеют схожие последовательности, а это значит, что последовательности гомологичных белков, например, инсулина или гемоглобина позвоночных, тоже очень схожи и имеют минимальные различия. Анализируя различия, можно определить, в каком порядке происходило развитие видов, и до какой степени разные виды можно назвать родственниками. Правда, для сложного анализа могут потребоваться мощные компьютеры и хорошие программы. Когда при помощи молекулярного анализа создают гипотетическое дерево эволюции, то оно оказывается во многом похоже на филогенетическое дерево, построенное на основании анатомического сходства. Порой данные о молекулярном строении заполняют пробелы или говорят о родстве, установить которое с помощью анатомии было невозможно.

В-третьих, выяснилось, что гены родственных видов расположены приблизительно в одинаковом порядке, и это явление называется синтенией. Степень синтении выше среди группы родственных организмов, таких как, например, млекопитающие.

Другой вид доказательств эволюции получен на основании наблюдений за генетическими изменениями в популяциях на протяжении исторического времени. В последнее время человек оказывает очень сильное воздействие на окружающую среду, и существует множество подтверждений того, что в ответ на изменения окружающей среды изменяются и организмы. В числе примеров — устойчивые к антибиотикам бактерии, устойчивые к яду профла-вин крысы; устойчивые к заболеванию миксомато-зом кролики (посредством этой болезни их пытались истребить в Австралии); устойчивые к тяжелым металлам растения. Классический пример приспособления — изменение окраски березовых пядениц (Biston betularia) в Великобритании. Стволы деревьев, на которых отдыхают эти бабочки, вследствие загрязнения воздуха и отмирания лишайников потемнели, что повлекло за собой потемнение окраски бабочек. Когда в последнее время загрязнение воздуха уменьшилось и стволы деревьев посветлели, количество бабочек со светлой окраской вновь увеличилось. Наблюдались примеры и более естественной эволюции. Хороший пример — адаптивная радиация ящериц Anolis, завезенных на некоторые острова в Карибском море. Петер и Роузмэри Грант также наблюдали, как популяция вьюрков (Geospizinae, называемых сейчас дарвиновыми вьюрками) на Галапагосских островах подвергается серии наследуемых адаптивных перемен (затрагивающих, например, форму клюва) в ответ на резкие изменения факторов окружающей среды, таких как периоды засухи и сильных штормов. Эти небольшие изменения доказывают, что адаптивными могут быть даже самые небольшие генетические различия.

Эволюция как процесс







Последнее изменение этой страницы: 2019-04-27; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.173.234.237 (0.023 с.)