Что представляют собой мутации? 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Что представляют собой мутации?



Мутация — это изменение в ДНК. Некоторые изменения происходят спонтанно, со временем. Например, молекулы ДНК теряют пуриновые основания гуанин и аденин (депуринизация) с относительно высокой скоростью. По примерным оценкам, клетка млекопитающего за сутки теряет около 10 тыс. пуриновых оснований. К счастью, в клетках имеются механизмы восстановления, которые вставляют основания в нужные места или вырезают искаженные последовательности и заменяют их вновь синтезируемыми.

Различные факторы также повреждают ДНК. Некоторые повреждения удается восстановить при помощи специальных (репаративных) ферментов, но другие повреждения становятся мутациями. В гл. 9 говорилось, что мутаген профлавин вставляет или удаляет одно или несколько оснований и вызывает так называемые мутации со сдвигом рамки, при которых механизм считывания генетического кода сдвигается. Мутация может быть и заменой одного основания на другое. Мутации такого рода образуются обычно при репликации ДНК, когда к новому основанию прикрепляется не то основание, которое должно было присоединиться изначально. Нормальные пары оснований, А—Т и G—С удерживаются посредством водородных связей, но иногда электроны и атомы водорода, образующие эти связи, могут сдвигаться. Основание G способно временно принять форму G* и при репликации образовать стабильную пару с тимином (Т), а не с ци-тозином (С). При последующей репликации в данном месте появится пара А—Т и, следовательно, произойдет мутация:

Аналоги оснований — это мутагенные молекулы, очень похожие на обычные основания и способные встраиваться в ДНК. Например, 5-бромурацил (5-BU) подобен тимину и может встраиваться в ДНК как парное основание для аденина. Но иногда в нем происходит внутренний сдвиг, и тогда он принимает свойства цитозина. Если такой сдвиг происходит во время репликации ДНК, то с 5-BU соединяется гуанин. Еще через одну репликацию прежняя пара А—Т заменяется на G—С.

Другие мутагены постоянно изменяют строение оснований ДНК и, следовательно, влияют на их свойства образовывать пары. Например, азотистая кислота, бисульфит и гидроксиламин удаляют амин-ные группы (рис. 14.1). Они превращают аденин в гипоксантин, который образует пару с гуанином; цитозин превращается в урацил, который создает пары как тимин.

Рис. 14.1. Дезаминирующий агент, такой как азотистая

кислота (NHO2), удаляет аминогруппу двух оснований,

превращая их в основания, образующие неправильные пары

Такие мутагены, как нитрозами-ны, добавляют к основанию метальную или этиль-ную группу. Например, когда гуанин превращается в О-метилгуанин, он иногда образует пару с тимином вместо цитозина, что тоже приводит к мутации. Нит-розамины обычно образуются в кислой среде желудка из нитритов, и это заставляет серьезно задуматься об употреблении нитритов в пищевой промышленности. (В 1976 году Управление по контролю за продуктами и лекарствами США понизило допустимый уровень нитритов в мясных консервах с 200 до 50—125 ед. на миллион.) Эти виды повреждений, как и повреждения от 5-BU, происходят обычно при репликации, поэтому к действию этих агентов восприимчивы, прежде всего, делящиеся клетки.

Мы живем в мире, заполненном отходами и продуктами промышленного производства. Поэтому помимо известных мутагенов на наши ДНК воздействуют различные химические вещества, влияние которых еще не изучено и непредсказуемо. Так, при сгорании многих веществ образуется бензопирен, который ферментами печени преобразуется в форму, реагирующую с ДНК. Бензопирен образуется и при копчении продуктов, когда повара стремятся придать своим блюдам аппетитную поджаристую корочку. Многим нравится арахисовое масло, хотя на его поверхности образуется плесень, вырабатывающая афлатоксины, еще один класс мутагенов. Это одна из самых главных опасностей, подстерегающих тех, кто ест арахис и продукты из него. Но мы назвали только некоторые из известных опасных химических веществ современного мира, и наверняка есть много таких, о которых мы почти ничего или вовсе не знаем.

Система восстановления ДНК

По мере развития жизни на нашей планете клетки постоянно встречались с различными мутагенами как в виде излучения, так и в виде химических веществ. Частота мутации должна находиться в пределах каких-то границ, поэтому давление отбора приводило к эволюции систем, способных восстанавливать повреждения в своей ДНК, а также исправлять случайные ошибки, которые постоянно происходят при репликации ДНК, поскольку механизм репликации далек от совершенства.

Одна из ферментных систем восстанавливает повреждения, вызванные ультрафиолетовым излучением. Когда ДНК поглощает ультрафиолетовый свет, соседние пиримидиновые основания одной цепи (например, тимин), образуют сложные соединения, подобные димеру тимина:

Ферменты распознают димер, вырезают его и заменяют другими основаниями. Но ультрафиолет, тем не менее, продолжает представлять опасность для ДНК, потому что многие вызванные им повреждения клетки устранить не могут. Основная угроза ультрафиолетового облучения — развитие рака кожи. Известно, что среди работающих на открытом воздухе, под лучами солнца, случаи рака кожи выше средних показателей. У фермеров, например, часто возникает рак кожи шеи, а у водителей грузовиков рак развивается чаще на левой руке, чем на правой. Данные о раке кожи в чем-то противоречат любимой привычке обитателей Северной Америки и Европы загорать и их представлениям о красоте смуглой кожи. Часто бывает так, что под воздействием солнечного излучения кожа становится сухой и дряблой, и в результате люди среднего возраста выглядят менее привлекательно и, конечно же, совсем не так, как они надеялись выглядеть, принимая солнечные ванны.

Некоторые наследственные заболевания человека связаны с неспособностью восстановления ДНК. Xeroferma pigmentosum (XP) — аутосомное рецессивное заболевание, поражающее примерно одного из 250 тыс. человек, характеризуется неспособностью восстанавливать повреждения, вызванные ультрафиолетовым излучением. Кожа людей с этим синдромом покрыта густыми веснушками, они очень чувствительны к свету, и у них чаще обычного развивается рак кожи. Жертвы другого синдрома, анемии Фанкони, имеют смугловатую кожу, невысокий рост и нарушения в строении скелета. Их кровяные клетки обновляются медленно, и потому возникают лейкемия, опухоли и различные хромосомные аберрации в кровяных клетках. Эти симптомы связаны с неспособностью некоторых ферментов связывать между собой цепи ДНК. Интересно, что их клетки менее подвержены мутациям, нежели обычные клетки.



Поделиться:


Последнее изменение этой страницы: 2019-04-27; просмотров: 265; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.216.163 (0.007 с.)