Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Плотность вер-ти и ее свойства. Связь с ф-ией распределения.Содержание книги
Поиск на нашем сайте
Пусть дана непрерывная случ. величина Х, ф-я расп. к-рой F(x) имеет непр. производную. Опр: плотностью вероятности непрерывной случ. величины Х наз. производная ее функции распределения, т.е. f(x)=F/(x). Т: Вероятность того, что непр. случ. вел. примет значение, принадл. (a,b) определяется рав-вом: Д-во: . График плотности вер-ти наз. кривой распределения. Вер. попадания сл. вел. в интервал (a,b)=площ. фигуры, ограниченной кривой распределения, осью Ох и прямыми х=a, х=b. Плотность вер-ти показ-ет как часто случ вел-на попадает в окр-ть точки при повтор-и опыта. Сл: Д-во: Св-ва: 1) f(x)³0 т.к. f(x) – производная неотрицательная, т.к. F(x) – неубывающая ф-ия. 2) Доказательство: геометрически это значит, что площадь всей фигуры, закл. м/у кривой распред-я и осью Ох=1
27. Нормальное распределение. Нормальная кривая. Вероятность попадания нормально распределенной случайной величины в интервалы и . Правило трех сигм. Непрер-я случ. вел-на подчин-ся норм-у з-ну распр-я, если ее плотность вер-ти им. вид: , s>0 и a- пар-ры норм распред. График f(x) наз. нормальной кривой или кривой Гаусса. Для построения графика функции исследуем f(x). (6 пунктов самостоятельно). Найдем вероятность попадания нормально расп. сл. вел. в (a,b). Частный случай: d=3s P(|X-a|<3s)=2Ф(3)=0.99 Т.к. вероятность близка к 1, то можно считать практически достоверным, что нормально распределенная случ. величина не выходит за пределы интервала (a-3s,a+3s). Это “правило трех сигм”. Числовые хар-ки непрерывной случайной величины. 1. МО. Пусть случ велич-на имеет возможные значен-я X: x1,…,xn с соответствующими вер-ми p1,…,pn. О: МО случ. вел. – это сумма произведен. всех ее возм. знач-й на их вероятность. Если конечное число значений, то М(Х)=х1*р1+…+ хn*рn. Если мн-во знач-й счетно, то М(Х)=åxipi, причем этот рад сход-ся абсолютно, чтобы его сумма не зависела от порядка расположения членов. Пусть непрерывная случайная величина задана плотностью вероятности f(x). О: МО непрер. случ. велич. – интеграл. . Несобственный интеграл должен сход. абсолютно. Вероятностный смысл: МО прибл. равно среднему арифмет. наблюдаемых знач-й. случ. велич.(тем точнее, чем больше число испытаний).
2. Дисперсия сл. величины – это МО квадрата отклонения случайной величины от ее МО. D(Х)=М[X-M(X)]2 На практике пользуются другой формулой: D(X)=M[x2-2X*M(X)+(M(X))2] = M(X2)-M(2X*M(X))+M[(M(X))2] = M(X2)-2M(X)*M(X)+(M(X))2 = M(X2)-[M(X)]2.
Свойства: 10 D(с)=0. с- const; док-тво: D(с)=М(с2)-М2(с)=с2-с2=0 20 D(сХ)=с2D(Х) 30 D(Х+Y)=Д(X+Y), если x,y - независимы. Следствие: D(Х-Y)=D(X+Y)
3. СКО Дисперсия имеет недостаток, она имеет размерность квадрата случ. величины. Поэтому с учетом того, что D(x)³0, вводят другую характеристику: СКО. О: СКО – это квадратный корень из её дисперсии. D(Х)=M(X2)-M2(X). Свойство СКО. 10 s(с)=0, с - const; 20 s(сX)=|c|s(X). Математическое ожидание и дисперсия нормального распределения. Плотность нормального распределения . Можно доказать, что М(Х)=а, а Д(Х)=s2 и s(Х)= s. Итак, параметры а и s нормального распределения равны соответственно МО и СКО. Пример: случ. величина Х распределена по нормальному закону. МО и СКО этой вел = 30, 10. Найти: вероятность того, что 1) Х прин (10,50) 2) отклонение по абс. величине будет меньше 3. a=30-b, s=10-a; P(a<X<b)=Ф(b-a/s)- Ф(a-a/s); 1) P(10<X<50)=Ф(2)-Ф(-2)=2Ф(2)=0.95. 2) P(|x-a|<d)=2Ф(d/s), P(|X-30|<3)=2Ф(0.3)=0.2358. Неравенство Чебышева. Если испыт. много, то результат не зависит от случая, что позволяет предугадывать ход событий. Дан факт явл содерж з-на больших чисел, кот сост из ряда теорем, уст факт сущ-я сред хар-к больш числа величин некот конст-м. Лемма:(Нер Чебышева). Пусть случайная величина Х имеет конечное МО и конечную дисперсию, т.е M(Х) D(Х), тогда для любых e>0 справедливо Д-во: в неравенстве Чебышева речь идет о попадании случайной величины в e окрестность ее математического ожидания. Найдем вероятность противоположного события, т.е. P(|X-M(X)|³e) для дискретной случайной величины Х (для непрерывной величины д-во аналогично), только суммы заменяются соответствующими интегралами. Пусть возможное значение xi величины X имеет вероятность pi (i=1…n), обозначим xk1,xk2,…,xkm. Те значения величины Х для которых справедливо (|Xki-M(X)³e), i=1…n. Тогда Pk1+Pk2+…+Pkm=P(|X-M(X)|³e) по определению дисперсии имеем D(X)=(X1-M(X))2p1+(X2-M(X))2p2+…+(Xn-M(X))2pn ³ (Xk1-M(X))2pk1+(Xk2-M(X))2pk2+…+(Xkm-M(X))2pkm³ e2(pk1+pk2+…+pkm)=e2P(|X-M(X)|³e). P(|X-M(X)|³e)£D(X)/e2, тогда -p(|X-M(X)|³e)³- D(X)/e2, 1-P(|X-M(X)|³e)³1-D(X)/e2, т.е. p(|X-M(X)|<e)³1-D(X)/e2
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 236; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.144.139 (0.007 с.) |