Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Способы выделения веществ у растений.

Поиск

У растений, так же как у животных, выделение веществ может быть пассивным и активным. Пассивное выделение продуктов обмена веществ по градиенту концентрации называется экскрецией, активное выведение веществ — секрецией. В процессах секреции обязательно участие активного транспорта веществ, на что затрачивается метаболическая энергия.

Как и у животных, у растений различают три способа выделения веществ из клетки: мерокриновую, апокриновую и голокриновую секрецию.

1. Мерокриновый тип секреции включает в себя две разновидности: а) эккриновую (мономолекулярную) секрецию через мембраны, осуществляемую активными переносчиками или ионными насосами; б) гранулокриновую секрецию — выделение веществ в «мембранной упаковке», т. е. в пузырьках (везикулах), секрет которых освобождается наружу при взаимодействии пузырька с плазмалеммой или поступает во внутренние компартменты клетки (в вакуоль).

2. Апокриновая секреция осуществляется с отрывом вместе с секретом части цитоплазмы, например с отрывом головок у солевых волосков некоторых галофитов.

3. Голокриновой называется секреция, при которой в результате активного секреторного процесса вся клетка превращается в секрет. Примером может служить секреция слизи клетками корневого чехлика.

Процесс секреции у растений осуществляется специализированными клетками и тканями. Наряду с этим к секреции способна каждая растительная клетка, формирующая клеточную стенку. В мембранах всех клеток функционируют ионные насосы (Н+-помпа и др.) и механизмы вторичного активного транспорта.

У растений нет единой выделительной системы, свойственной животным. Выделяемые вещества могут накапливаться внутри клетки (в вакуолях), в специальных хранилищах (например, в смоляных ходах) или выносятся на поверхность растения.

Наиболее изученным механизмом эккриновой секреции являются ионные насосы, прежде всего Н+-помпа. Меньше известно о физиологии гранулокриновой (везикулярной) секреции. Для животных объектов установлено, что секреция с участием везикул аппарата Гольджи — сложный многоступенчатый процесс, осуществляющийся в два этапа: 1) транспорт везикул, 2) слияние их с плазмалеммой. На первом этапе секреторные пузырьки направленно перемещаются от АГ к определенным участкам клеточной мембраны с помощью микротрубочек и актиновых микрофиламентов, для чего необходим АТР. На втором этапе везикулы слипаются (адгезия) с плазмалеммой при участии специальных белков (гликопротеинов типа лектина) и Са2 +. В результате происходит кластеризация адгезивного комплекса, обнажение липидных фаз в области контакта, слияние липидных бислоев везикулы и клеточной мембраны, прорыв контакта и расширение прорыва. Все это приводит к встраиванию мембраны секреторного пузырька в клеточную мембрану и выходу секрета на наружную поверхность плазмалеммы. На втором этапе секреторного процесса клетке необходим Са2 +. Роль кальция многообразна: участие в активации актомиозинового комплекса, снижение поверхностного отрицательного заряда контактирующих мембран, Са2+-зависимое фосфорилированием бранных белков с участием кальмодулина. Молекулярный механизм везикулярной секреции в растительных клетках не изучен. Однако известно, что и здесь необходим Саг +. По-видимому, процессы секреции у растений аналогичны тому, что известно для клеток животных.

 

Индукция поляризации у растений.

Важнейшее условие формообразования при развитии организма — поляризация биологических структур. Под полярностью подразумевают специфическую ориентацию процессов и структур в пространстве, приводящую к появлению морфофизиологических градиентов. Полярность определяет положений осей, обусловливающих форму клеток, органов и целого организма.

Полярность особенно наглядно представлена у растений, для которых характерна биполярная структура (главная ось: побег — корень). В физиологическом плане полярность проявляется у растений, в частности в процессах регенерации. У стеблевых и корневых черенков независимо от их положения в пространстве побеги развиваются с морфологически апикального (по отношению к верхушке стебля), а корни — с базального концов. Это объясняется тем, что ИУК, перемещаясь полярно, скапливается в морфологически нижнем конце черенка и индуцирует включение генетической программы корнеобразования.

Однако полярность не является изначальным и неизменно существующим свойством биологических объектов. У спор хвощей и папоротников полярность возникает лишь после определенных внешних воздействий, например, в условиях односторонне падающего света. При делении такой поляризованной споры освещенная сторона и соответствующая дочерняя клетка формируют заросток, а затененная -ризоид.

Механизм поляризации особенно подробно изучен у яйцеклетки бурой морской водоросли Fucus. До оплодотворения яйцеклетка фукуса лишена оболочки, ядро расположено в центре клетки и вначале не наблюдается сколько-нибудь заметной полярности в ее строении. После оплодотворения клетка опускается на дно, покрывается оболочкой и через некоторое время на ее нижней поверхности начинается образование ризоидного выступа. Первое деление яйцеклетки проходит в направлении, перпендикулярном образовавшейся оси. Верхняя клетка дает начало большей части таллома, нижняя — небольшой части таллома и ризоиду. По-видимому, сила гравитации в данном случае не представляет собой определяющего фактора в индуцировании полярности, так как при развитии яйцеклеток фукуса в темноте ризоиды могут расти в различных направлениях. При одностороннем освещении ризоид образуется с затененной стороны.

Предполагается, что вследствие электрической поляризации яйцеклетки в ее плазмалемме происходит латеральное электрофоретическое перемещение липопротеиновых компонентов с положительным или отрицательным зарядом (L. F. Jaffe et al. 1977—1980). Эти компоненты (ионные каналы, насосы, ферменты и др.) затем закрепляются на полюсах клетки с помощью микрофиламентов и микротрубочек цитоскелета, что необратимо фиксирует возникшую первичную поляризацию и определяет главную ось тела растения. При последующем делении яйцеклетки (плоскость деления перпендикулярна оси поляризации) ядра в дочерних клетках попадают в совершенно разные условия, возникшие в поляризованной цитоплазме, и вследствие этого начинают поставлять неидентичную генетическую информацию. Таким образом происходит дифференциация клеток.

Поляризация клеток у многоклеточных организмов вызывается самыми разными причинами: физико-химическими градиентами (величины осмотического давления и pH, концентрации 02, С02 и т. д.), гормональными, электрическими и трофическими градиентами, контактами с соседними клетками (контактная поляризация), механическим давлением и натяжением. Особое значение для целостности растения имеют те градиенты, которые создаются доминирующими центрами побега и корня — их верхушками. Колебательный характер этих градиентов — важное условие поддержания временной целостности растительного организма.

 

Вопрос

Теория «эффекта положения».

Каждая клетка многоклеточного организма подвергается определенным воздействиям со стороны физических, химических и физиологических градиентов и влиянию соседних клеток. В результате в клетках реализуются именно те потенции (дифференцировка, функциональная активность), которые соответствуют окружающим условиям. Эта теория получила название «эффекта положения».

Для того чтобы адекватно отвечать на изменение условий и сигналы, поступающие из окружающей среды (свойство раздражимости), каждая клетка постоянно тестирует (проверяет) свое местоположение.

Дж. Боннер (1965) для объяснения механизмов управления дифференцировкой предложил принцип морфогенетических тестов. Апикальная клетка делится в поперечном направлении на две дочерние. Каждая из них «определяет», является ли она верхушечной. Для апикальной клетки результатом будет продолжение деления, а вторая, субапикальная, тестирует величину группы окружающих ее клеток. Если группа мала, включается подпрограмма деления, функционирующая до достижения определенного программой количества клеток в этом участке апекса. После образования необходимого числа клеток каждая из них тестирует свое положение у поверхности или в глубине клеточной популяции. Если анализ показывает, что какие-то клетки находятся на поверхности группы, включается программа их дифференцировки в клетки эпидермальные. Остальные клетки, оказавшиеся не на поверхности, проводят тест на положение в глубине группы, в результате чего у расположенных в самой глубине индуцируется подпрограмма дифференцировки в клетки ксилемы, а у находящихся менее глубоко — подпрограмма образования флоэмы. Клетки, занимающие промежуточное положение, становятся камбиальными, т. е. делятся по замкнутому циклу, формируя элементы ксилемы и флоэмы.

У растений найдены рецепторы фитогормонов, позволяющие клеткам оценивать их состав и количество в окружающей среде. При культивировании растительных клеток в искусственной среде установлен «эффект массы». Единичная изолированная клетка редко переходит к делению. Чем гуще высеяны клетки (например, на поверхность питательного агара), тем большее их число начинает делиться. Если яйцеклетки фукуса помещены близко друг от друга, то ризоиды образуются в сторону центра группы («групповой эффект»). Это явление можно объяснить тем, что каждая яйцеклетка синтезирует и выделяет в окружающую среду ИУК, и концентрация этого фитогормона в центре группы оказывается более высокой, чем снаружи. Как уже говорилось, ауксин индуцирует у яйцеклеток фукуса образование ризоидов. Таким образом, тест на величину труппы клеток может быть опосредован концентрацией фитогормонов или других физиологически активных веществ, выделяемых клетками.

 

Прямое окисление сахаров.

Некоторые организмы способны окислять и нефосфорилированную глюкозу. Этот путь прямого окисления сахаров обнаружен у некоторых бактерий, грибов и животных, а также у фотосинтезирующих морских водорослей.

Из мицелия плесневого гриба Aspergillus niger может быть выделен ферментный препарат, способный окислять глюкозу в глюконовую кислоту.

Окисление глюкозы до глюконовой кислоты осуществляется— глюкооксидазой, содержащей в своем составе две молекулы FAD и 15% (от ее массы) углеводов.

Фермент отнимает два атома водорода от глюкозы, находящейся в пиранозной форме, и переносит его на молекулярный кислород. Перед окислением происходит превращение (мутаротация) ос-глюкозы в?-форму, Первичный продукт окисления — лактон глюконовой кислоты, который, гидратируясь неферментативным путем, превращается в глюконовую кислоту:

Если в процессе дыхания прямому окислению подвергаются и другие сахара, кроме глюкозы, то образуется целое семейство кислот, названных кислотами прямого (первичного) окисления сахаров. Глюкозооксидаза способна окислять только D-глюкозу. В этом отношении она отличается от D-гексозооксидазы, способной наряду с D-глюкозой окислять и другие гексозы (мальтозу, лактозу, целлобиозу) с образованием соответствующих альдоновых кислот.

Введенные в растительные клетки, эти кислоты используются в процессе дыхания. Из глюкуроновой и галактуроновой кислот в клетках может образоваться аскорбиновая кислота (витамин С).

 

Вычеркнут



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 1449; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.234.146 (0.009 с.)