Организменный уровень интеграции у растений. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Организменный уровень интеграции у растений.



Механизмы интеграции.

Все системы межклеточной регуляции — трофическая, гормональная, электрофизиологическая — тесно взаимосвязаны между собой. Каждая из этих систем действует на клетки через системы внутриклеточной регуляции, т. е. изменяя функциональную активность ферментов и мембран, влияя на интенсивность и направленность синтеза нуклеиновых кислот и белков. Таким образом создается единая иерархическая система регуляции, определяющая взаимодействие всех частей растения.

Растение имеет четко выраженную биполярную структуру, и создают эту структуру ее полюса — верхушки побега и корня. Они являются зонами ткане- и органообразования, сенсорными и аттрагирующими (притягивающими метаболиты) зонами.

Верхушка вегетирующего побега, куда входят апикальная меристема и развивающиеся листья, ингибирует рост боковых почек (апикальное доминирование), индуцирует образование проводящих пучков и корнеобразование, влияет на ориентацию листьев, рост корней и т.д.

Кончик корня: торможение закладки боковых корней, индукция образования и роста стеблевых почек, поддержание трофики листьев и др. Причем во многих случаях показано, что верхушка побега в этих явлениях может быть заменена ауксином, а верхушка корня — цитокинином, т. е. теми фитогормонами, которые синтезируются в этих доминирующих центрах.

Создание физиологических полей (физиологических градиентов). Изменение силы воздействия со стороны полюсов сейчас же отразится на состоянии всех частей, входящих в поле. Свойство полярности выражается в градуальном увеличении или уменьшении вдоль оси растения осмотического давления, величины pH, концентрации различных веществ, активности ферментов, интенсивности дыхания и т. д. У высших растений полярность создается прежде всего градиентами фитогормонов.

Между различными органами имеются проводящие сосудистые пучки, по которым транспортируются питательные вещества и фитогормоны и электрические импульсы, обеспечивает пространственную организацию растительного организма. Причем не только полярность, но и канализированные связи находятся под контролем доминирующих центров.

Временная интеграция организма осуществляется системой взаимосвязанных осцилляции (ритмы) в апексе побега преобразуются в закономерное чередование листьев, пазушных почек и междоузлий. По-видимому, осцилляции одного порядка входят составной частью в осцилляции с большей амплитудой и т. д., образуя иерархию осцилляции, которую можно рассматривать как биологические часы. Весьма вероятно, что осцилляции в доминирующих центрах (в частности, колебания транспорта фитогормонов) служат для временной синхронизации физиологических процессов в целом растении.

Как уже отмечалось, внутри- и межклеточные системы регуляции функционируют во взаимодействии. Это взаимодействие организовано в виде регуляторных контуров. Внешний стимул воспринимается специфическими рецепторами в рецепторных клетках ---> возбужденное состояние ---> Рецепторные клетки перекодируют внешний сигнал в сигнал другого рода — гормональный или электрический ---> ретранслируется клетками каналов связи ---> достигая компетентных (т. е. способных реагировать на него) клеток, сигнал индуцирует их функциональную активность, что и является ответом целого организма на внешний стимул.

На наличие отрицательных обратных связей в системах регуляции растений указывают такие явления, как колебания физиологических процессов.

Таким образом, организменный уровень интеграции достигается взаимодействием частей по принципу регуляторных контуров и благодаря элементам централизации управления. Доминирующие центры с помощью полей, канализированных связей и осцилляции обеспечивают целостность растительного организма. Материальными факторами для осуществления этих принципов управления служат межклеточные системы регуляции

 

Согласованность различных физиологических, морфогенетических и двигательных процессов, протекающих в растительном организме, обеспечивается системами регуляции и интеграции. Внутриклеточный уровень включает в себя регуляцию активности ферментов, генетическую и мембранную системы регуляции, которые взаимодействуют между собой. Межклеточный (межтканевый, межорганный) уровень представлен трофической, гормональной и электрофизиологической системами регуляции. Эти системы также взаимосвязаны и действуют через внутриклеточные регуляторные системы. Фитогормоны — ауксин, цитокинин, гиббереллины, абсцизины, этилен — главная система регуляции у растений. Электрофизиологические явления (электрические поля и импульсы), по-видимому, также играют важную роль, но менее изучены.

Целостность на организменном уровне создается взаимодействием частей и элементами централизации управления, что находит свое выражение в существовании доминирующих центров. Физиологические градиенты (полярность) и канализированные связи (проводящие пучки) участвуют в пространственной, а физиологические осцилляции (ритмы) — во временной организации жизнедеятельности растения. Все компоненты систем регуляции объединены в регуляторные контуры с обратными связями и лежат в основе явления раздражимости. Важнейшие участники регуляторных контуров — фото-, хемо- и механорецепторы. К ним относится фитохром — фоторецептор красного и дальнего красного света.

 

Значение железа, кремния, алюминия для жизнедеятельности растений.

Железо.

Среднее содержание железа в растениях составляет 0,02-0,08%. Fe3+ почвенного раствора восстанавливается до Fe2+ и в такой форме поступает в корень.

-Железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания.

-Участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями.

-Железо катализирует также начальные этапы синтеза хлорофилла.

Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них — белок ферритин.

 

Кремний

обнаружен у всех растений. Особенно много его в клеточных стенках. Растения, накапливающие кремний, имеют прочные стебли.

Диатомовые водоросли строят свои оболочки, концентрируя его из окружающей среды. Недостаток кремния может задерживать рост злаков (кукуруза, овес, ячмень и двудольных растений (огурцы, томаты, табак, бобы).

Исключение кремния во время репродуктивной стадии вызывает уменьшение количества семян, при этом снижается число зрелых семян. При отсутствии в питательной среде кремния нарушается ультраструктура клеточных органелл.

Алюминий

относится к макроэлементам, в которых нуждаются только некоторые растения. Предполагается, что он имеет большое значение в обмене веществ у гидрофитов. Интересно отметить, что этот катион концентрируют папоротники и чай. При недостатке алюминия у чайного листа наблюдается хлороз, однако высокие концентрации токсичны для растений. В высоких дозах алюминий связывается в клетках с фосфором, что в итоге приводит к фосфорному голоданию растений.

 

Фотофосфорилирование.

Разница в уровнях энергии между П680 и П700 (> 50 кДж) вполне достаточна для фосфорилирования ADP, так как величина высокоэнергетической фосфатной связи АТР равна 30,6 кДж/моль (7,3 ккал).

Механизм фосфорилирования ADP, сопряженного с деятельностью электронтранспортной цепи, объясняет хемиосмотическая теория.

Сущность хемиосмотической теории состоит в следующем. Цепь переносчиков электронов и протонов, действующая в соответствии с окислительно-восстановительным градиентом, перешнуровывает мембрану таким образом, что трансмембранный перенос е- и Н+ в одну сторону чередуется с переносом в обратную сторону только е-. В результате функционирования такого механизма (Н+-помпы) по одну сторону мембраны накапливается избыток Н+ и возникает электрохимический потенциал ионов Н+, который служит формой запасания энергии. Обратный пассивный ток ионов Н+ через протонный канал Н + -АТРазы, получивший название сопрягающего фактора CF1 сопровождается образованием высокоэнергетической фосфатной связи АТР.

Из среды, окружающей тилакоид, при поглощении пигментами квантов света исчезают, а во внутренней полости тилакоида появляются протоны. В результате на мембране возникает электрохимический потенциал ионов Н+, который затем используется для фосфорилирования ADP. Этот процесс называется нециклическим фотофосфорилированием.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 885; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.0.53 (0.006 с.)