Преимущества и недостатки конструкционных сплавов на основе меди. Латуни, бронзы, их состав, марки, свойства, применение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Преимущества и недостатки конструкционных сплавов на основе меди. Латуни, бронзы, их состав, марки, свойства, применение.

Поиск

 

Медь и ее сплавы

Медь имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см3, температура плавления 1083oС.

Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu).

Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение – 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди.

Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами.

Латуни.

Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка около 37 %.

По способу изготовления изделий различают латуни деформируемые и литейные.

Деформируемые латуни маркируются буквой Л, за которой следует число, показывающее содержание меди в процентах, например в латуни Л62 содержится 62 % меди и 38 % цинка. Если кроме меди и цинка, имеются другие элементы, то ставятся их начальные буквы (О – олово, С – свинец, Ж – железо, Ф – фосфор, Мц – марганец, А – алюминий, Ц – цинк

Латуни имеют хорошую коррозионную стойкость, которую можно повысить дополнительно присадкой олова. Латунь ЛО70-1 стойка против коррозии в морской воде и называется “морской латунью“.

Добавка никеля и железа повышает механическую прочность до 550 МПа.

Литейные латуни также маркируются буквой Л, После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве. Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца.. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ, ЛАЖМц. Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью.

Латуни являются хорошим материалом для конструкций, работающих при отрицательных температурах.

Бронзы

 

Сплавы меди с другими элементами кроме цинка назаваются бронзами.

Бронзы подразделяются на деформируемые и литейные.

При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры, показавающие содержание компонентов в сплаве. Например, марка БрОФ10-1 означает, что в бронзу входит 10 % олова, 1 % фосфора, остальное – медь.

Маркировка литейных бронз также начинается с букв Бр, затем указываются буквенные обозначения легирующих элементов и ставится цифра, указывающая его усредненное содержание в сплаве. Например, бронза БрО3Ц12С5 содержит 3 % олова, 12 % цинка, 5 % свинца, остальное – медь.

Оловянные бронзы При сплавлении меди с оловом образуются твердые растворы. Эти сплавы очень склонны к ликвации из-за большого температурного интервала кристаллизации. Благодаря ликвации сплавы с содержанием олова выше 5 % имеют в структуре эвтектоидную составляющую Э(), состоящую из мягкой и твердой фаз. Такое строение является благоприятным для деталей типа подшипников скольжения: мягкая фаза обеспечивает хорошую прирабатываемость, твердые частицы создают износостойкость. Поэтому оловянные бронзы являются хорошими антифрикционными материалами.

Оловянные бронзы имеют низкую объемную усадку (около 0,8 %), поэтому используются в художественном литье.

Наличие фосфора обеспечивает хорошую жидкотекучесть.

Оловянные бронзы подразделяются на деформируемые и литейные.

В деформируемых бронзах содержание олова не должно превышать 6 %, для обеспечения необходимой пластичности, БрОФ6,5-0,15.

В зависимости от состава деформируемые бронзы отличаются высокими механическими, антикоррозионными, антифрикционными и упругими свойствами, и используются в различных отраслях промышленности. Из этих сплавов изготавливают прутки, трубы, ленту, проволоку.

Литейные оловянные бронзы, БрО3Ц7С5Н1, БрО4Ц4С17, применяются для изготовления пароводяной арматуры и для отливок антифрикционных деталей типа втулок, венцов червячных колес, вкладышей подшипников.

 

 

Билет 11.

1. Упрочняющая термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии: закалка + старение. Структура и свойства закаленных сплавов. Виды выделений при старении, их влияние на свойства сплавов.

Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии

Переменная растворимость компонен­тов в твердом состоянии дает возмож­ность значительно упрочнять сплавы путем термической обработки. Это при­вело к широкому использованию спла­вов этого типа — стареющих сплавов в качестве конструкционных материалов повышенной и высокой прочности; при­меняют стареющие сплавы на алюми­ниевой, медной, железной, никелевой, кобальтовой, титановой и других осно­вах.

Рассмотрим принцип упрочняющей термической обработки стареющих сплавов на примере системы с промежу­точным соединением (рис.а).

К термически упрочняемым относятся сплавы составов от точки а до промежуточного соединения , в которых при охлаждении из твердого раствора выделяются вторичные кристаллы . При этом степень упрочнения тем выше, чем больше масса вторичных кристаллов и равновесном сплаве (рис.б).

Рассмотрим для примера сплав I состава точки С который в равновесном состоянии имеет двухфазную структуру, состоящую из кристаллов твердого раствора концентрации точки а и относительно крупных вторичных кристаллов .Сопротивление движению дисло­каций подрастает по мере уменьшения расстояний между частицами упрочняю­щей фазы, т. е. сплав I станет прочнее, когда и место немногочисленных крупных включений образуется большое количество мелких. Наибольшее препятствие для движения дислокаций создают включения, отстоящие друг от друга на 25-50 межатомных расстояний. В большинстве стареющих сплавов же­лательная дисперсная структура обра­зуется в результате термической обра­ботки, состоящей из двух операций закалки и старения.

При закалке сплавы нагревают до температур, обеспечивающих распад вторичных кристаллов. Для рассматри­ваемого сплава I такой будет температу­ра, несколько превышающая (см. рис. а). Быстрым охлаждением с тем­пературы закалки полностью подавляю процесс выделения вторичных кристал­лов и в результате получают одно­фазный сплав - перенасыщенный компо­нентом В твердый раствор. Перенасыще­ние твердого раствора относительно мало сказывается на повышении твер­дости и прочности, незначительно изме­няется и пластичность сплавов.

Пересыщенный твердый раствор представляет собой неравновесную структуру с повышенным уровнем сво­бодной энергии. Поэтому, как только подвижность атомов окажется доста­точно большой, твердый раствор будет распадаться - начнется процесс старения. Старение, происходящее при повы­шенных температурах, называют искус­ственным. В сплавах на основе низко­плавких металлов старение может про­исходить при температуре 20-25 С в процессе выдержки после закалки; та­кое старение называют естественным. При старении уменьшается концен­трация пересыщающего компонента в твердом растворе; этот компонент расходуется на образование выделений. Тип выделений (кристаллическая структура), их размер и характер сопря­женности с решеткой твердого раствора зависят как от вида сплава, так и от условий старения т. е. от температуры и времени выдержки.

В общем случае при распаде перенасы­щенных твердых растворов могут возникать образования следующих типов (они перечисляются и порядке возраста­ния энергии активации зарождения):

1) зоны Гинье-Престона;

2) кри­сталлы метастабильной фазы;

3) кри­сталлы стабильной фазы.

Зоны Гиньс-Престона (зоны ГП) представляют собой весьма малые (субмикроскопические) обьемы твердого раствора с резко повышенной концен­трацией растворенного компонента, со­храняющие решетку растворителя. Ско­пление растворенных атомов вызывает местное изменение периода решетки твердого раствора. При значительной разнице в размерах атомов А и В, как это, например, наблюдается в сплавах Al-Cu, зоны ГП имеют форму дисков, толщина которых (учитывая искажения решетки) составляет несколько межа­томных расстояний (рис. а), диаметр 10-50 нм. Диски закономерно ориенти­рованы относительно пространственной решетки растворителя. При небольшом различии в атомных диаметрах компо­нентов, как, например, в сплавах Al-Zn, обогащенные зоны имеют форму сфер.

Метастабильные фазы имеют иную пространственную решетку, чем твер­дый раствор, однако существует сходство в расположении атомов в определенных атомных плоскостях той ил иной решетки, что вызывает образование когерентной {или полу когерент­ной) границы раздела. Когерентная гра­ница при некотором различии кристал­лической структуры приводит к появле­нию переходной зоны с искаженной решеткой (рис.,6). Для метастабильных фаз характерна высокая дис­персность, что значительно повышает сопротивление движению дислокаций.

Стабильная фаза , имеет слож­ную пространственную решетку с пони­женным числом элементов симметрии и е большим числом атомов в элемен­тарной ячейке.

Вторичные кристаллы со стабильной структурой в большинстве сплавов вы­деляются в виде достаточно крупных частиц. Значительное различие кристал­лической структуры твердого раствора и стабильных кристаллов приводит к образованию некогерентной границе раздела

(рис. в) и, соответственно, к минимальным искажениям решетки твердого раствора вблизи границы. Упрочнение сплава при образовании стабильных кристаллов , оказывается меньшим, чем при образовании зон ГП и мета стабильных когерентных кристаллов.Кривые старения (рис.) принят строить в координатах твердость (прочность)-длительность старения (при постоянной температуре). Условно примем, что максимальное упрочнение сплава I (см. рис. 5.4) достигается при выделении зон ГП.

Температура t0 выбрана настолько невысокой, что распада пересыщенного твердого раствора не происходит и, со­ответственно, не наблюдается измене­ния твердости (прочности) закаленного сплава.

Старение при температуре t1, вызывает повышение прочности вследствие образования зон ГП; если данная тем­пература недостаточна для того, чтобы активировать зарождение метастабильных кристаллов, то твердость (прочности) достигнет максимального значения и в дальнейшем не будет изменяться сколь угодно длительное время (рис. 5.6, сплошная линия). Если темпе­ратура t1 достаточная для зарождения метастабильных кристаллов, то твер­дость после достижения максимального значения начнет понижаться, сплав бу­дет “перестариваться” (рис. 5.6, штриховая линия).

Конструкционные стали повышенной прочности: легированные стали. Принципы легирования, маркировка. Термическая обработка, свойства и применение легированных сталей в зависимости от содержания углерода.

Легированной называется сталь, содержащая в своем составе один или несколько специально введенных легирующих элементов в количестве, заметно изменяющем свойства стали. Принципы маркировки стали:

Марка легированной стали – буквенно-цифровой код ее химического состава.Каждый элемент обозначается заглавной буквой русского алфавита:

а) по первой букве русского названия Н – Ni; В – W; Т – Ti; Х – Cr; М – Mo; Г – Mn; Д – Cu; Ю – Al; А – N; Б – Nb;

б) по первой букве латинского названия С – Si;

в) просто условное обозначение Ф – V;

Марка легированной стали:

Если число соответствующее содержанию углерода двухзначное, то это содержание углерода в сотых долях процента, если в единицах, то это содержание углерода в десятых долях процента.

– низколегированные

– среднелегированные

– высоколегированные

Влияние некоторых основных легирующих элементов на свойства сталей.

1. Никель. Никель образует твердые растворы внутри легированных сталей, повышается прочность стали, ее устойчивость к высоким температурам (никель – сильный аустенизатор).

2. Хром. Если содержание в стали хрома больше 12%, то сталь – нержавеющая (при условии растворения хрома в кристаллической решетке железа). Хром – сильно карбидообразующий элемент. Из-за образования карбидов коррозионная стойкость стали может уменьшаться. В стали 12Х18Н10Т предотвращено образование карбидов хрома на зернах.

3. Вольфрам. Вольфрам повышает твердость и прочность стали. Сильно карбидообразующий элемент. Карбиды вольфрама устойчивы и действуют при температуре выше температуры применения. Вольфрам используют для изготовления инструментальных сталей.

4. Ванадий. Ванадий повышает устойчивость к циклическим нагружениям и высоким температурам.

5. Марганец. Марганец способствует повышению твердости и прочности, обеспечивает высокую вязкость сталей.

6. Кремний. Кремний – ферритизатор – повышает устойчивость феррита при высоких температурах, то есть такая сталь обладает хорошими электро-магнитными свойствами (феррит – сильный ферромагнетик). Стали с высоким содержанием кремния используются для изготовления сердечников для электроприборов.

 

Билет 12

1. Диаграмма состояния двойных сплавов для случая образования промежуточной фазы, фазовый и структурный анализ.

 

Диаграмма состояния представлена на рис. 5.7.

По внешнему виду диаграмма похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Отличие в том, что линии предельной растворимости компонентов не перпендикулярны оси концентрации. Появляются области, в которых из однородных твердых растворов при понижении температуры выделяются вторичные фазы.

На диаграмме:

· df – линия переменной предельной растворимости компонента В в компоненте А;

· ek – линия переменной предельной растворимости компонента А в компоненте В.

Кривая охлаждения сплава I представлена на рис. 5.7 б.

Рис. 5.7. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (а) и кривая охлаждения сплава (б)

 

Процесс кристаллизации сплава I: до точки 1 охлаждается сплав в жидком состоянии. При температуре, соответствующей точке 1, начинают образовываться центры кристаллизации твердого раствора . На участке 1–2 идет процесс кристаллизации, протекающий при понижающейся температуре. При достижении температуры соответствующей точке 2, сплав затвердевает, при дальнейшем понижении температуры охлаждается сплав в твердом состоянии, состоящий из однородных кристаллов твердого раствора . При достижении температуры, соответствующей точке 3, твердый раствор оказывается насыщенным компонентом В, при более низких температурах растворимость второго компонента уменьшается, поэтому из -раствора начинает выделяться избыточный компонент в виде кристаллов . За точкой 3 сплав состоит из двух фаз: кристаллов твердого раствора и вторичных кристаллов твердого раствора .

Также см. билет 3

2. Факторы, влияющие на износостойкость в условиях абразивного из нашивания, в условиях высоких удельных давлений, в условиях кавитации. Износостойкие материалы высокой твердости, износостойкие материалы невысокой твердости. Состав, марки, свойства, применение.


Билет 13

1. Теория и практика отпуска сталей. Влияние легирующих элементов на превращения закаленных сталей при нагреве. Структура и свойства отпущенных сталей.

Отпуск – термическая обработка стали, заключающаяся в нагреве закаленной на мартенсит стали до температуры ниже критической, выдержки при этой температуре и охлаждении на воздухе.

Цель отпуска: Улучшение механических свойств закаленной стали, снижение хрупкости, повышение пластичности, некоторое снижение твердости и прочности.Закалка + Отпуск = Улучшение свойств стали.

Исходная структура – мартенсит закалки: высокое содержание углерода, сильно искаженная кристаллическая решетка, значительное напряжение в структуре, высокая степень неравновесности.

Виды отпуска:

1) Низкотемпературный отпуск (низкий отпуск):

Исходная структура – мартенсит закалки, температура отпуска tотп = 150–250° C. В результате отпуска – мартенсит отпуска и -карбиды.

При повышении температуры активизируется диффузия. Часть атомов углерода покидает кристаллы мартенсита, концентрируется в локальных областях, где образуется карбид железа (-карбид). Размеры этих карбидов очень небольшие. Результат низкого отпуска: уменьшение степени пересыщенности мартенсита и, как следствие, снижение внутреннего напряжения, немного снижается твердость и прочность. Мартенситная структура в целом сохраняется, снижается склонность стали к хрупкому разрушению.

2) Среднетемпературный отпуск (средний отпуск):

Исходная структура – мартенсит закалки, температура отпуска tотп = 250–450° C. В результате отпуска – тростит отпуска.

При повышении температуры активизируется диффузия. Диффузия углерода при такой температуре достаточна для превращения мартенсита в перлитную структуру, но не достаточна для перемещения углерода на большие расстояния. В итоге образуется смесь феррита и цементита. Особенности среднего отпуска: маленький размер кристаллов, кристаллы равноостные, мелкодисперсные. Такая структура называется тростит отпуска. Такая структура обладает высокой прочностью и твердостью и достаточным запасом пластичности. Используется для ответственных, сильно нагреваемых деталей (пружины, рессоры).

3) Высокотемпературный отпуск (высокий отпуск):

Исходная структура – мартенсит закалки, температура отпуска tотп = 450–650° C. В результате отпуска – сорбит отпуска.

Процессы аналогичны среднему отпуску, но увеличивается расстояние, на которое смещаются атомы углерода. Диффузия происходит интенсивнее, чем в случае среднетемпературного отпуска, увеличиваются размеры кристаллов феррита и цементита. Такая структура называется сорбит отпуска. В результате высокого отпуска повышается пластичность, снижается хрупкость, одновременно уменьшается твердость и прочность. Используется для ответственных, сильно нагреваемых деталей под ударными нагрузками.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100) o С.

Дополнительные легирующие элементы.

Бор - 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 oС.

Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.

Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 577; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.104.132 (0.011 с.)