Структурные составляющие железоуглеродистых сплавов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структурные составляющие железоуглеродистых сплавов



Компоненты

Основными компонентами являются железо Fe и углерод С и оба являются полиморфными.

Железо – серебристо-светлый, мягкий металл с плотностью
р = 7,86 г/см3. Технически чистое железо (0,1–0,2% примесей) имеет следующие механические свойства:

 

Предел временного сопротивления
При растяжении σв, МПа 250–350
Предел текучести σт, МПа 120–150
Относительное удлинение δ, % 40–50
Относительное сужение ψ, % 80–85
Твердость HB 75–90

 

 

Чем чище железо, тем меньше прочностные показатели и выше показатели пластичности.

Железо плавится при температуре 1539 °С и имеет две модификации: Fe a и Fe Y. Fe a существует при температурах до 911 °С и в интервале от 1392 до 1539 °С, имеет ОЦК решетку с периодом 0,286 нм (при температуре 20–25 °С). Важной особенностью Fea является его ферромагнетизм ниже температуры 768°С, называемой точкой Кюри.

Модификация Fey существует в интервале температур от 911 до 1392 °С, имеет ГЦК решетку, период которой при 911 °С равен 0,364 нм. ГЦК решетка более компактна, чем ОЦК решетка, и поэтому при переходе Fe a в Fe Y объем железа уменьшается приблизительно на 1%. Fe Y парамагнитно.

Углерод – неметаллический элемент (T пл = 3500 °С). В свободном состоянии встречается в виде алмаза и графита.

В сплавах с железом встречается либо в виде графита (серый, ковкий и высокопрочный чугуны), либо в виде химического соединения с железом Fe3C – цементита (стали и белые чугуны).

 

Критические точки сплавов

Критическая точка – температура, при которой в сплаве происходят фазовые превращения. Критические точки определяют по кривым охлаждения сплавов.

В зависимости от характера превращения критические точки имеют собственные имена: ликвидус, солидус, сольвус (табл. 6.1) и др.

Каждая точка диаграммы состояния характеризует строго определенный состав сплава при соответствующей температуре. Точка А (1539 °С) отвечает температуре плавления железа, точка D (≈ 1250 °С) – температуре плавления цементита, точки N (1392 оС) и G (910 °С) соответствуют полиморфному превращению Feα↔Feγ.

Таблица 6.1

Виды критических точек сплавов

 

Название точки (обозначение) Фазовое превращение при охлаждении (нагревании) Примечания
Ликвидус   L↔ТВ Начало выпадения твердой фазы в жидком расплаве (конец расплавления твердой фазы) Для чистых компонентов и эвтектических сплавов точки ликвидус и солидус совпадают
Солидус   L↔ТВ Конец выпадения твердой фазы в жидком расплаве (начало расплавления твердой фазы)
Сольвус (точка вторичной кристаллизации)   ТВ↔ТВ + ТВII Выпадение вторичной фазы в результате снижении растворимости компонентов сплава в твердом состоянии Вторичная фаза представляет собой химическое соединение АnBm
Точка Кюри (точка магнитного превращения)   Приобретение ферромагнитных свойств твердым веществом Не связано с перекристаллизацией. Ni – 360 °C Fe – 768 °C Co – 1150 °C
Точка полиморфного превращения (точка перекристаллизации) ТВa ↔ТВβ Переход высокотемпературной аллотропической формы в низкотемпературную (переход низкотемпературной аллотропической формы в высокотемпературную) Для сплавов перекристаллизация проходит в интервале температур  

 

Концентрация углерода (по массе) для характерных точек диаграммы состояния следующая: В – 0,51% С в жидкой фазе, находя-щейся в равновесии с δ -ферритом (Feδ(C)) и аустенитом (Feγ(C)), при перитектической реакции и при 1499 оС; Н – 0,1% С в δ - феррите при 1490 оС; J – 0,16% C – в аустените-перитектике при 1490 оС; Е – 2,14% предельное содержание в аустените при 1147 °С; S – 0,8% С в аустените при реакции эвтектоидного превращения 727 °С; Р – 0,02% С – предельное содержание в феррите (Feα(C)) при 727 °С.

Линия, соединяющая точки АВСD на диаграмме, – линия ликвидус. Выше этой линии все железоуглеродистые сплавы находятся в жидком состоянии. Линия АHJECF – линия солидус. Ниже этой линии все сплавы находятся в твердом состоянии и при дальнейшем охлаждении происходят только процессы, связанные с изменением растворимости углерода в Fe α и Fe γ, а также процессы, которые обусловливаются аллотропическим (полиморфным) превращением железа.

Линия АВ указывает температуру начала кристаллизации δ- феррита из жидкого сплава; линия ВС – температуру начала кристаллизации аустенита; линия CD – температуру начала кристаллизации первичного цементита. При достижении температуры 1147 °С ECF (эвтектики) состав жидкой фазы любого сплава, расположенного между точками E и F диаграммы, будет соответствовать точке C (4,3% С). При этой температуре оставшаяся часть жидкой фазы состава 4,3% углерода кристаллизуется с образованием эвтектики – механической смеси кристаллов аустенита и цементита, называемой ледебуритом.

Ниже линии GS происходит полиморфное превращение аустенита в феррит.

Линия SE является линией насыщения и показывает, как изменяется растворимость углерода Fe γ с изменением температуры. Вследствие уменьшения растворимости углерода в Fe γ при понижении температуры из пересыщенного аустенита будет выделяться вторичный цементит ЦII.

Линия PSK 727 °C является линией эвтектоидного превращения. При этой температуре аустенит (Аs) состава точки S (0,8% C) распадается с образованием перлита (Пs): Аs→ Пs→ (Ф + Ц).

 

Таблица 6.2

Значения точек на диаграмме железо – цементит

 

Обозначение точки на диаграмме Температура °С Концентрация углерода %
А – температура плавления чистого железа    
Н – предельная концентрация углерода в высокотемпературном феррите     0.1
N – температура аллотропического превращения железа    
D – температура плавления цементита   6.67
Е – наибольшая концентрация углерода в аустените     2.14
С – точка эвтектики   4.3
G – температура аллотропического превращения железа    
Р – предельная концентрация углерода в низкотемпературном феррите     0.02
S – эвтектоидная точка   0.8

Превращение в диаграмме Fe–Fe3C

В диаграмме (рис. 6.6) отмечено три линии, параллельные оси концентрации – HJB, ECF и PSK, характеризующие различные превращения.

 

Рис. 6.6. Область перитектического превращения к диаграмме Fe-Fe3C

Линия HJB характеризует перитектическое превращение (рис. 6.6), суть которого в том, что из жидкости концентрации т. В (0,5% С) и высокотемпературного феррита концентрации т. Н (0,1% С) образуется одна фаза – аустенит концентрации т. J (0,16% С).

 

Жв = Фн – Aj.

Рассмотрим кривую охлаждения сплава 1 с содержанием углерода 0,16% (точно соответствующего перитектической реакции). В т. 1 в жидкости начинается кристаллизация твердой фазы – феррита, которого по мере охлаждения становится всё больше и к т. 2 он приобретает концентрацию т. Н. Оставшаяся жидкость в этот момент имеет концентрацию т. В. При взаимодействии Фн и Жв происходит перитектическое превращение с образованием AJ. В интервале концентраций между т. Н и J после превращения остается избыточный феррит, а между т. J и В – избыточная жидкость, которая по мере охлаждения также превращается в аустенит, но иной концентрации, чем перитектический. По мере охлаждения концентрация аустенита за счет диффузии атомов углерода уравнивается.

В сплавах с содержанием углерода менее 0,1% и более 0,5% перитектическое превращение не идет.

Линия ECF характеризует эвтектическое превращение (рис. 6.7), суть которого в том, что из жидкости концентрации т. С (4,3% С) кристаллизуется механическая смесь двух фаз – аустенита концентрации, т. Е (2,14% С) и цементита: Жс – Ае + Ц.

Эвтектическая механическая смесь носит название «ледебурит» и имеет концентрацию т. С (4,3% С). Как и все превращения, эвтектическое идет при остановке температуры (т.1–1) и заканчивается при кристаллизации всей жидкости.

Итак, эвтектический чугун имеет при температуре ниже 1147 °С структуру ледебурита, состоящего из А + Ц. В доэвтектическом чугуне в т. 2 (рис. 6.7, сплав 2) из жидкости вначале кристаллизуются зерна аустенита. По мере охлаждения количество аустенита растет, а жидкость обогащается углеродом (концентрация изменяется по линии ВС) и при температуре 1147 °С имеет концентрацию т. С (4,3% С), т.е. эвтектическую.

В т. 3–3' идет эвтектическое превращение до полной кристаллизации жидкости в ледебурит. Следовательно, доэвтектический чугун наряду с ледебуритом имеет в структуре зёрна первоначально образованного аустенита. По аналогии в заэвтектическом чугуне (рис. 6.7, сплав 3) первоначально из жидкости выделяется цементит, обедняя жидкость, которая при температуре 1147 °С также имеет эвтектическую концентрацию.

 

Рис. 6.7. Область эвтектического превращения в диаграмме железо-цементит

 

 

Рис. 6.8. Область эвтектоидного превращения в диаграмме железо-цементит

Заэвтектический чугун наряду с эвтектикой – ледебуритом имеет пластины первоначально выделившегося из жидкости цементита, отмечаемого как первичный (Л + Ц).

Впоследствии при охлаждении чугуна входящий в его структуру аустенит на линии PSK претерпевает эвтектическое превращение с образованием перлита. Чугун ниже 727 °С имеет следующую структуру: эвтектический – ледебурит (П + Ц); доэвтектический П + Л (П + Ц); заэвтектический – Ц + Л (П + Ц).

Линия PSK характеризует эвтектоидное превращение (рис. 6.8), суть которого в том, что из аустенита концентрации т. S (0,8% С) обра-зуется механическая смесь двух фаз – феррита концентрации т. Р (0,02% С) и цементита: А – Фр + Ц.

Механическая эвтектоидная смесь носит название «перлит» и имеет содержание углерода 0,8%. Как правило, в равновесном состоянии в сталях перлит имеет пластинчатое строение (чередующиеся пластины феррита и цементита). Эвтектоидное превращение идет с остановкой температуры до исчезновения аустенита (рис. 6.8, сплав 1, т, 11'). Наиболее характерно образование эвтектоидной смеси перлита для сталей. Стали даже получили деление на эвтектоидные, доэвтектоидные и заэвтектоидные.

В доэвтектоидной стали (рис. 6.8, сплав 2) из аустенита первоначально выделяется феррит (т. 2), обогащая аустенит, концентрация которого по мере охлаждения приближается к концентрации точки S. При достижении линии PSK в оставшемся аустените происходят эвтектоидные превращения с образованием перлита. Таким образом, доэвтектоидная сталь состоит из Ф + П, причем, чем больше углерода, тем большее количество перлита наблюдается в структуре.

В заэвтектической стали (рис. 6.8, сплав 3) из аустенита первоначально выделяется цементит, называемый вторичным – ЦΙΙ, обедняя аустенит по углероду, концентрация которого по мере охлаждения аустенита приближается к концентрации т. S. Далее, аустенит превращается в эвтектоидную смесь – перлит по известной схеме. В результате структура заэвтектоидной стали представляет собой перлит и цементит вторичный (П + ЦΙΙ). Отличительной особенностью является то, что ЦΙΙ выделяется в виде сетки по границам зерна аустенита на месте которого может возникнуть в последующем несколько зёрен перлита. Отсюда и структура заэвтектоидной стали при температуре менее 727 °С: зёрна перлита и сетка ЦΙΙ, окаймляющего одно или несколько зёрен перлита пластинчатого.

Как ранее было отмечено, в технически чистом железе находится не более 0,02% С, что и определяет специфику формирования его структуры. Из диаграммы Fe – Fe3C видно (рис. 6.9), что эвтектоидного превращения для такого рода сплавов не происходит. Из аустенита при охлаждении начинает выделяться феррит (сплав I, т.1–2; сплав II, т.3–4). Разница феррита и сплавов только в количестве растворенного углерода. Если углерода менее 0,01%, то структура феррита остаётся неизменной вплоть до комнатной температуры. Если же углерода более 0,01% и до 0,02%, то при пересечении при охлаждении линии PQ растворимость углерода в феррите падает (рис. 6.9, сплав II) и углерод выделяется по границам зёрен феррита в виде включений ЦΙΙΙ (цементита третичного).

 

 

Рис. 6.9. Ферритная область диаграммы Fe – Fe3C

Процесс выделения ЦΙΙΙ из феррита характерен для всех железоуглеродистых сплавов, имеющих в структуре феррит, просто его уловить в других структурах практически невозможно вследствие его объединения с другими видами цементита.

Пример расчёта количества структурных составляющих и фаз

 

В качестве примера рассмотрим расчёт весового количества структурных составляющих и фаз с помощью правила отрезков в заэвтектоидной стали с 1,5% углерода при 600 °С (рис. 6.13).

Содержания структурных составляющих определяются последова-тельно по мере их образования в процессе охлаждении сплава с применением правила отрезков для двух сосуществующих фаз или структурных составляющих по коноде abc6def. Величину отрезков будем измерять в процентах углерода. Считаем, что концентрация в точке а 0,01% углерода.

Определим фазовый состав в точке 6:

 

 

 

Количество структурных составляющих в точке 6:

 

 

 

Учитывая некоторые особенности в использовании коноды для области диаграммы, где находятся три структурные составляющие, рассмотрим расчёт для такого случая на примере точки 7 (содержание углерода 4% при температуре 600 °С):

 

 

Рис. 6.13. Схема для изучения превращений, происходящих в стали с содержанием углерода 1,5% при медленном охлаждении: а – диаграмма состояния;

б – кривая кристаллизации сплава

 

 

Компоненты

Основными компонентами являются железо Fe и углерод С и оба являются полиморфными.

Железо – серебристо-светлый, мягкий металл с плотностью
р = 7,86 г/см3. Технически чистое железо (0,1–0,2% примесей) имеет следующие механические свойства:

 

Предел временного сопротивления
При растяжении σв, МПа 250–350
Предел текучести σт, МПа 120–150
Относительное удлинение δ, % 40–50
Относительное сужение ψ, % 80–85
Твердость HB 75–90

 

 

Чем чище железо, тем меньше прочностные показатели и выше показатели пластичности.

Железо плавится при температуре 1539 °С и имеет две модификации: Fe a и Fe Y. Fe a существует при температурах до 911 °С и в интервале от 1392 до 1539 °С, имеет ОЦК решетку с периодом 0,286 нм (при температуре 20–25 °С). Важной особенностью Fea является его ферромагнетизм ниже температуры 768°С, называемой точкой Кюри.

Модификация Fey существует в интервале температур от 911 до 1392 °С, имеет ГЦК решетку, период которой при 911 °С равен 0,364 нм. ГЦК решетка более компактна, чем ОЦК решетка, и поэтому при переходе Fe a в Fe Y объем железа уменьшается приблизительно на 1%. Fe Y парамагнитно.

Углерод – неметаллический элемент (T пл = 3500 °С). В свободном состоянии встречается в виде алмаза и графита.

В сплавах с железом встречается либо в виде графита (серый, ковкий и высокопрочный чугуны), либо в виде химического соединения с железом Fe3C – цементита (стали и белые чугуны).

 

Структурные составляющие железоуглеродистых сплавов

Структуры могут быть однофазные, двухфазные и многофазные. К однофазным структурам относят феррит, аустенит, цементит.

Феррит – твердый раствор внедрения углерода в Fe a. В низкотемпе-ратурной модификации Fe a максимальная растворимость углерода равна 0,02% при температуре 727 °С (т. Р), в высокотемпературной модификации Fe a – 0,1% при температуре 1499 °С (т. Н). При комнатной температуре в феррите содержится 0,01% С. Характеризуется низкой прочностью (σв= 250 МПа) и твердостью 63-130 НВ, высокой пластичностью (относительное удлинение δ = 40%). На диаграмме состояния феррит занимает область GPQ. Образуется из аустенита (рис. 6.2).

 

 

Рис. 6.2. Феррит

 

Аустенит – твердый раствор внедрения углерода в F Y с ГЦК решеткой. Максимальная растворимость равна 2,14% при температуре 1147 °С (т. Е), что практически на два порядка выше, чем в феррите. Аустенит пластичен, но прочнее феррита (НВ 160–200). Аустенит парамагнитен (рис. 6.3).

 


 

Рис. 6.3. Аустенит

 

 

 

 

Рис. 6.4. Феррит и аустенит

Цементит – химическое соединение железа с углеродом. Стехиометрическая формула цементита – Fe3C (карбид железа), содержит 6,67% С. Цементит имеет сложную орторомбическую кристаллическую решётку (рис. 6.5), обладает высокой твердостью (НВ 800) и большой хрупкостью. Чем больше цементита в сплавах, тем большей твердостью и меньшей пластичностью они обладают. По условиям образования различают: первичный цементит ЦI (образуется при кристаллизации из жидкости в виде больших светлых кристаллов), вторичный цементит Цп (выделяется из аустенита в виде сетки по границам зерен), третичный цементит Цш (выделяется из графита в виде мелких зерен).

В зависимости от условий кристаллизации и последующей обработки цементит может иметь различную форму – равноосных зёрен, сетки по границам зёрен, пластин, а также видманштеттову структуру.

Цементит в разных количествах, в зависимости от концентрации, присутствует в железоуглеродистых сплавах уже при малых содержаниях углерода. Формируется в процессе кристаллизации из расплава чугуна. Выделается в сталях при охлаждении аустенита или при нагреве мартенсита. Цементит является фазовой и структурной составляющей железоуглеродистых сплавов, составной частью ледебурита, перлита, сорбита и троостита. Цементит – представитель так называемых фаз внедрения, соединений переходных металлов с легкими металлоидами. В фазах внедрения велики доля как ковалентной, так и металлической связи. Прочность 8500 МПа.

 

 

Рис. 6.5. Кристаллическое строение цементита

К двухфазным составляющим относят перлит и ледебурит.

Перлит – механическая смесь (эвтектоид) феррита и цементита (Ф+Ц). Существует ниже 727 °С и содержит 0,8% С. Образуется в результате распада аустенита в процессе его охлаждения при температурах ниже 727 °C. Перлит в зависимости от формы частичек цементита бывает пластинчатым или зернистым, что определяет его механические свойства. Перлит чаще всего имеет пластинчатое строение и является прочной структурной составляющей (σв = 800-900 МПа, δ ≤ 16%, 180-220 HB).

Ледебурит – механическая смесь (эвтектика) в области температур от 1147 до 727 °С состоит из аустенита и цементита (А+Ц), а ниже 727 °С состоит из перлита и цементита (П+Ц). Содержит 4,3% С.

 

Критические точки сплавов

Критическая точка – температура, при которой в сплаве происходят фазовые превращения. Критические точки определяют по кривым охлаждения сплавов.

В зависимости от характера превращения критические точки имеют собственные имена: ликвидус, солидус, сольвус (табл. 6.1) и др.

Каждая точка диаграммы состояния характеризует строго определенный состав сплава при соответствующей температуре. Точка А (1539 °С) отвечает температуре плавления железа, точка D (≈ 1250 °С) – температуре плавления цементита, точки N (1392 оС) и G (910 °С) соответствуют полиморфному превращению Feα↔Feγ.

Таблица 6.1

Виды критических точек сплавов

 

Название точки (обозначение) Фазовое превращение при охлаждении (нагревании) Примечания
Ликвидус   L↔ТВ Начало выпадения твердой фазы в жидком расплаве (конец расплавления твердой фазы) Для чистых компонентов и эвтектических сплавов точки ликвидус и солидус совпадают
Солидус   L↔ТВ Конец выпадения твердой фазы в жидком расплаве (начало расплавления твердой фазы)
Сольвус (точка вторичной кристаллизации)   ТВ↔ТВ + ТВII Выпадение вторичной фазы в результате снижении растворимости компонентов сплава в твердом состоянии Вторичная фаза представляет собой химическое соединение АnBm
Точка Кюри (точка магнитного превращения)   Приобретение ферромагнитных свойств твердым веществом Не связано с перекристаллизацией. Ni – 360 °C Fe – 768 °C Co – 1150 °C
Точка полиморфного превращения (точка перекристаллизации) ТВa ↔ТВβ Переход высокотемпературной аллотропической формы в низкотемпературную (переход низкотемпературной аллотропической формы в высокотемпературную) Для сплавов перекристаллизация проходит в интервале температур  

 

Концентрация углерода (по массе) для характерных точек диаграммы состояния следующая: В – 0,51% С в жидкой фазе, находя-щейся в равновесии с δ -ферритом (Feδ(C)) и аустенитом (Feγ(C)), при перитектической реакции и при 1499 оС; Н – 0,1% С в δ - феррите при 1490 оС; J – 0,16% C – в аустените-перитектике при 1490 оС; Е – 2,14% предельное содержание в аустените при 1147 °С; S – 0,8% С в аустените при реакции эвтектоидного превращения 727 °С; Р – 0,02% С – предельное содержание в феррите (Feα(C)) при 727 °С.

Линия, соединяющая точки АВСD на диаграмме, – линия ликвидус. Выше этой линии все железоуглеродистые сплавы находятся в жидком состоянии. Линия АHJECF – линия солидус. Ниже этой линии все сплавы находятся в твердом состоянии и при дальнейшем охлаждении происходят только процессы, связанные с изменением растворимости углерода в Fe α и Fe γ, а также процессы, которые обусловливаются аллотропическим (полиморфным) превращением железа.

Линия АВ указывает температуру начала кристаллизации δ- феррита из жидкого сплава; линия ВС – температуру начала кристаллизации аустенита; линия CD – температуру начала кристаллизации первичного цементита. При достижении температуры 1147 °С ECF (эвтектики) состав жидкой фазы любого сплава, расположенного между точками E и F диаграммы, будет соответствовать точке C (4,3% С). При этой температуре оставшаяся часть жидкой фазы состава 4,3% углерода кристаллизуется с образованием эвтектики – механической смеси кристаллов аустенита и цементита, называемой ледебуритом.

Ниже линии GS происходит полиморфное превращение аустенита в феррит.

Линия SE является линией насыщения и показывает, как изменяется растворимость углерода Fe γ с изменением температуры. Вследствие уменьшения растворимости углерода в Fe γ при понижении температуры из пересыщенного аустенита будет выделяться вторичный цементит ЦII.

Линия PSK 727 °C является линией эвтектоидного превращения. При этой температуре аустенит (Аs) состава точки S (0,8% C) распадается с образованием перлита (Пs): Аs→ Пs→ (Ф + Ц).

 

Таблица 6.2

Значения точек на диаграмме железо – цементит

 

Обозначение точки на диаграмме Температура °С Концентрация углерода %
А – температура плавления чистого железа    
Н – предельная концентрация углерода в высокотемпературном феррите     0.1
N – температура аллотропического превращения железа    
D – температура плавления цементита   6.67
Е – наибольшая концентрация углерода в аустените     2.14
С – точка эвтектики   4.3
G – температура аллотропического превращения железа    
Р – предельная концентрация углерода в низкотемпературном феррите     0.02
S – эвтектоидная точка   0.8

Превращение в диаграмме Fe–Fe3C

В диаграмме (рис. 6.6) отмечено три линии, параллельные оси концентрации – HJB, ECF и PSK, характеризующие различные превращения.

 

Рис. 6.6. Область перитектического превращения к диаграмме Fe-Fe3C

Линия HJB характеризует перитектическое превращение (рис. 6.6), суть которого в том, что из жидкости концентрации т. В (0,5% С) и высокотемпературного феррита концентрации т. Н (0,1% С) образуется одна фаза – аустенит концентрации т. J (0,16% С).

 

Жв = Фн – Aj.

Рассмотрим кривую охлаждения сплава 1 с содержанием углерода 0,16% (точно соответствующего перитектической реакции). В т. 1 в жидкости начинается кристаллизация твердой фазы – феррита, которого по мере охлаждения становится всё больше и к т. 2 он приобретает концентрацию т. Н. Оставшаяся жидкость в этот момент имеет концентрацию т. В. При взаимодействии Фн и Жв происходит перитектическое превращение с образованием AJ. В интервале концентраций между т. Н и J после превращения остается избыточный феррит, а между т. J и В – избыточная жидкость, которая по мере охлаждения также превращается в аустенит, но иной концентрации, чем перитектический. По мере охлаждения концентрация аустенита за счет диффузии атомов углерода уравнивается.

В сплавах с содержанием углерода менее 0,1% и более 0,5% перитектическое превращение не идет.

Линия ECF характеризует эвтектическое превращение (рис. 6.7), суть которого в том, что из жидкости концентрации т. С (4,3% С) кристаллизуется механическая смесь двух фаз – аустенита концентрации, т. Е (2,14% С) и цементита: Жс – Ае + Ц.

Эвтектическая механическая смесь носит название «ледебурит» и имеет концентрацию т. С (4,3% С). Как и все превращения, эвтектическое идет при остановке температуры (т.1–1) и заканчивается при кристаллизации всей жидкости.

Итак, эвтектический чугун имеет при температуре ниже 1147 °С структуру ледебурита, состоящего из А + Ц. В доэвтектическом чугуне в т. 2 (рис. 6.7, сплав 2) из жидкости вначале кристаллизуются зерна аустенита. По мере охлаждения количество аустенита растет, а жидкость обогащается углеродом (концентрация изменяется по линии ВС) и при температуре 1147 °С имеет концентрацию т. С (4,3% С), т.е. эвтектическую.

В т. 3–3' идет эвтектическое превращение до полной кристаллизации жидкости в ледебурит. Следовательно, доэвтектический чугун наряду с ледебуритом имеет в структуре зёрна первоначально образованного аустенита. По аналогии в заэвтектическом чугуне (рис. 6.7, сплав 3) первоначально из жидкости выделяется цементит, обедняя жидкость, которая при температуре 1147 °С также имеет эвтектическую концентрацию.

 

Рис. 6.7. Область эвтектического превращения в диаграмме железо-цементит

 

 

Рис. 6.8. Область эвтектоидного превращения в диаграмме железо-цементит

Заэвтектический чугун наряду с эвтектикой – ледебуритом имеет пластины первоначально выделившегося из жидкости цементита, отмечаемого как первичный (Л + Ц).

Впоследствии при охлаждении чугуна входящий в его структуру аустенит на линии PSK претерпевает эвтектическое превращение с образованием перлита. Чугун ниже 727 °С имеет следующую структуру: эвтектический – ледебурит (П + Ц); доэвтектический П + Л (П + Ц); заэвтектический – Ц + Л (П + Ц).

Линия PSK характеризует эвтектоидное превращение (рис. 6.8), суть которого в том, что из аустенита концентрации т. S (0,8% С) обра-зуется механическая смесь двух фаз – феррита концентрации т. Р (0,02% С) и цементита: А – Фр + Ц.

Механическая эвтектоидная смесь носит название «перлит» и имеет содержание углерода 0,8%. Как правило, в равновесном состоянии в сталях перлит имеет пластинчатое строение (чередующиеся пластины феррита и цементита). Эвтектоидное превращение идет с остановкой температуры до исчезновения аустенита (рис. 6.8, сплав 1, т, 11'). Наиболее характерно образование эвтектоидной смеси перлита для сталей. Стали даже получили деление на эвтектоидные, доэвтектоидные и заэвтектоидные.

В доэвтектоидной стали (рис. 6.8, сплав 2) из аустенита первоначально выделяется феррит (т. 2), обогащая аустенит, концентрация которого по мере охлаждения приближается к концентрации точки S. При достижении линии PSK в оставшемся аустените происходят эвтектоидные превращения с образованием перлита. Таким образом, доэвтектоидная сталь состоит из Ф + П, причем, чем больше углерода, тем большее количество перлита наблюдается в структуре.

В заэвтектической стали (рис. 6.8, сплав 3) из аустенита первоначально выделяется цементит, называемый вторичным – ЦΙΙ, обедняя аустенит по углероду, концентрация которого по мере охлаждения аустенита приближается к концентрации т. S. Далее, аустенит превращается в эвтектоидную смесь – перлит по известной схеме. В результате структура заэвтектоидной стали представляет собой перлит и цементит вторичный (П + ЦΙΙ). Отличительной особенностью является то, что ЦΙΙ выделяется в виде сетки по границам зерна аустенита на месте которого может возникнуть в последующем несколько зёрен перлита. Отсюда и структура заэвтектоидной стали при температуре менее 727 °С: зёрна перлита и сетка ЦΙΙ, окаймляющего одно или несколько зёрен перлита пластинчатого.

Как ранее было отмечено, в технически чистом железе находится не более 0,02% С, что и определяет специфику формирования его структуры. Из диаграммы Fe – Fe3C видно (рис. 6.9), что эвтектоидного превращения для такого рода сплавов не происходит. Из аустенита при охлаждении начинает выделяться феррит (сплав I, т.1–2; сплав II, т.3–4). Разница феррита и сплавов только в количестве растворенного углерода. Если углерода менее 0,01%, то структура феррита остаётся неизменной вплоть до комнатной температуры. Если же углерода более 0,01% и до 0,02%, то при пересечении при охлаждении линии PQ растворимость углерода в феррите падает (рис. 6.9, сплав II) и углерод выделяется по границам зёрен феррита в виде включений ЦΙΙΙ (цементита третичного).

 

 

Рис. 6.9. Ферритная область диаграммы Fe – Fe3C

Процесс выделения ЦΙΙΙ из феррита характерен для всех железоуглеродистых сплавов, имеющих в структуре феррит, просто его уловить в других структурах практически невозможно вследствие его объединения с другими видами цементита.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 896; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.124.232 (0.112 с.)