ТОП 10:

Формула 2 — модуль вектора индукции




Где альфа это угол между вектором скорости и радиус вектором


Эти формулы определяют магнитную индукцию для положительного заряда. Если ее необходимо рассчитать для отрицательного заряда то нужно подставить заряд со знаком минус. Скорость движения заряда определяется относительно точки наблюдения.


Чтобы обнаружить магнитное поле при перемещении заряда можно провести опыт. При этом заряд не обязательно должен двигаться под действием электрических сил. Первая часть опыта состоит в том, что по проводнику круговой формы проходит электрический ток. Следовательно, вокруг него образуется магнитное поле. Действие, которого можно наблюдать при отклонении магнитной стрелки находящейся рядом с витком.

 

28. из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением
(1)
где В — индукция магнитного поля, в котором заряд движется.
Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q<0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении. Модуль силы Лоренца, как уже известно, равен

гдеα— угол между v и В.

Подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.
Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.
Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает. Другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется. В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы Лоренца:


Это выражение носит название формулы Лоренца. Скорость v в этой формуле есть скорость заряда относительно магнитного поля.


 

29. Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

 

 

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Применение силы Лоренца







Последнее изменение этой страницы: 2017-02-21; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.239.172.52 (0.002 с.)