ТОП 10:

Связь между напряженностью и потенциалом э.с.п.



Итак, электростатическое поле можно описать либо с помощью векторной величины , либо с помощью скалярной величины φ. Очевидно, что между этими величинами должна существовать определенная связь. Найдем ее:

Изобразим перемещение заряда q по произвольному пути l (Рис. 3.1) в электростатическом поле .

Работу, совершенную силами электростатического поля на бесконечно малом отрезке dl, можно найти так:

  (3.4.1)  

где Elпроекция на ; dl– произвольное направление перемещения заряда.

С другой стороны, как мы показали, эта работа, если она совершена электростатическим полем, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl:

,

отсюда

  (3.4.2)  

Для ориентации dl (направление перемещения) в пространстве, надо знать проекции на оси координат:

  (3.4.3)  

По определению градиента сумма первых производных от какой-либо функции по координатам есть градиент этой функции, то есть

вектор, показывающий направление наибыстрейшего увеличения функции.

Тогда коротко связь между и φ записывается так:

  (3.4.4)  

или так:

  , (3.4.5)  

где (набла) означает символический вектор, называемый оператором Гамильтона.

Знак минус говорит о том, что вектор направлен в сторону уменьшения потенциала электрического поля.

13) Проводники, полупроводники, диэлектрики.

Проводни́к — тело, в котором имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в виде угля и графита). Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества, при нормальных условиях являющиеся изоляторами, при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Диэлектрик (изолятор) — вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

К диэлектрикам относятся воздух и другие газы, стёкла, различные смолы, пластмассы, многие виды резины.

Электрический ток.

Электри́ческий ток — направленное движение заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

 







Последнее изменение этой страницы: 2017-02-21; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.74.184 (0.003 с.)