Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение минимально допустимых изоляционных расстояний в сухих трансформаторахСодержание книги
Поиск на нашем сайте
Главная изоляция в сухих трансформаторах осуществляется обычно при помощи таких же изоляционных конструктивных деталей, как и в масляных трансформаторах: изоляционных цилиндров, угловых шайб, междуфазных перегородок и т. д. При конструировании сухих трансформаторов наряду с обеспечением электрической прочности Таблица 4.15. Изоляция обмоток ВН сухих трансформаторов, мм
Рис 4.17. Главная изоляция обмоток сухих трансформаторов Вернуться к содержанию следует обращать особое внимание на получение достаточных воздушных охладительных каналов между обмотками и такое расположение изоляционных деталей (угловых шайб и т. д.), при котором обеспечивается наилучший доступ воздуха к обмоткам. Основные изоляционные расстояния главной изоляции (рис. 4.17) могут быть выбраны по табл. 4.15 и 4.16. Междувитковая изоляция сухих трансформаторов обычно достаточно надежно обеспечивается нормальной изоляцией провода. В качестве междукатушечной изоляции могут служить горизонтальные воздушные каналы, размеры которых определяются по условиям отвода тепла по табл. 9.2. Междуслойная изоляция в многослойных цилиндрических обмотках сухих трансформаторов может выполняться из стеклолакоткани марки ЛСБ-120/130 на основе битумно-масляного алкидного лака с толщиной полотна 0,15 мм (ГОСТ 10156—78). При рабочем напряжении двух слоев обмотки 1000—2000 В следует проложить три слоя по 0,15 мм; при напряжении 2001—3000 В — четыре слоя по 0,15 мм и при напряжении 3001—3500 В — пять слоев по 0,15 мм. Выступ междуслойной изоляции за торцы обмотки 20 мм. Структура изоляции на торцах выполнена по рис. 5.21. Таблица 4.16. Изоляция обмоток НН сухих трансформаторов, мм
Примечания: 1. См. примчание к табл. 4.15 2. Для винтовой обмотки при Uисп для НН 3кВ ставить цилиндр δ01=2,5-5мм и принимать a01 не менее 20мм. Сухие трансформаторы устанавливаются внутри помещений, подводка линии высшего напряжения к ним осуществляется кабелем. Поэтому изоляция сухих трансформаторов испытывает коммутационные перенапряжения, но практически свободна от воздействия атмосферных перенапряжений. Минимальные расстояния между токоведущими и заземленными частями в сухом трансформаторе (отвод ВН — отвод НН; отвод ВН — заземленная шпилька; отвод ВН— обмотка ВН; отвод ВН — стенка кожуха и т. д.) можно принять следующими: при чисто воздушном промежутке при рабочем напряжении 6 кВ 50 мм, при 10 кВ 80 мм; при наличии барьера 2 мм или покрытия той же толщины на одном из электродов — соответственно 40 и 60 мм. Допустимое расстояние по поверхности твердого диэлектрика (электроизоляционный картон, гетинакс и др., но не дерево) при рабочем напряжении 6 и 10 кВ — около 100 мм. Глава пятая ВЫБОР КОНСТРУКЦИИ ОБМОТОК ТРАНСФОРМАТОРОВ ОБЩИЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ОБМОТКАМ ТРАНСФОРМАТОРА Общие требования, предъявляемые к обмоткам трансформатора, можно подразделить на эксплуатационные и производственные. Основными эксплуатационными требованиями являются надежность, электрическая и механическая прочность и нагревостойкость как обмоток, так и других частей и всего трансформатора в целом. Изоляция обмоток и других частей трансформатора должна выдерживать без повреждений коммутационные и атмосферные перенапряжения, которые могут возникнуть в сети, где трансформатор будет работать. Механическая прочность обмоток должна допускать упругие деформации, но гарантировать их от остаточных деформаций и повреждений при токах короткого замыкания, многократно превышающих номинальный рабочий ток трансформатора. Нагрев обмоток и других частей от потерь, возникающих в трансформаторе при номинальном режиме работы, допустимых перегрузках и коротких замыканиях ограниченной длительности, не должен приводить изоляцию обмоток и других частей, а также масло трансформатора к тепловому износу или разрушению в сроки более короткие, чем обычный срок службы трансформатора — 25 лет. Общие эксплуатационные требования, предъявляемые к трансформаторам и их обмоткам, регламентированы соответствующими общесоюзными стандартами на силовые трансформаторы общего назначения, различные трансформаторы специального назначения, электрические испытания изоляции трансформаторов и т. д. Практически электрическая прочность изоляции обмоток достигается рациональной ее конструкцией, правильным выбором изоляционных промежутков и изоляционных материалов и прогрессивной технологией обработки изоляции при высокой общей культуре производства. Требование механической прочности обмотки удовлетворяется путем рациональной организации поля рассеяния, а также правильного выбора типа конструкции обмотки и расположения ее витков и катушек с таким расчетом, чтобы возникающие в этой обмотке механические силы были по возможности меньшими, а механическая стойкость возможно большей. Для достижения необходимой нагревостойкости следует обеспечить свободную теплоотдачу в окружающую среду всего тепла, выделяющегося в обмотках при допустимых для данного класса нагревостойкости изоляции превышениях температуры обмоток над температурой окружающей среды, т. е. обеспечить достаточно большую поверхность соприкосновения обмотки с охлаждающей средой — маслом или воздухом. Основные производственные требования к трансформатору заключаются прежде всего в технологичности его конструкции, позволяющей изготовить трансформатор с минимальными затратами труда и материалов. Требования, предъявляемые к трансформатору в целом, в полной мере относятся к обмоткам. Задачей проектировщика является разумное сочетание интересов эксплуатации и производства. Эта задача решается в значительной мере при выборе того или иного типа обмотки. Поэтому на выбор типа обмотки, наиболее полно отвечающей требованиям эксплуатации и в то же время простой и дешевой в производстве, следует обращать особое внимание. Практические указания по этому вопросу даются в характеристиках различных типов обмоток. В процессе расчета обмотки после выбора ее типа следует добиваться наибольшей компактности в ее размещении, распределении витков и катушек, для того чтобы получить наилучшее заполнение окна трансформатора. Одновременно следует стремиться к получению достаточно развитой поверхности охлаждения обмотки и достаточного числа и размеров масляных (воздушных у сухого трансформатора) охлаждающих каналов в обмотках при обеспечении наименьшего гидро- и аэродинамического сопротивления для движения в них охлаждающей среды, что дает возможность уменьшить внутренний перепад температуры в обмотках и как следствие этого несколько уменьшить охлаждаемую поверхность бака трансформатора. Потери энергии, выделяющейся в обмотках в виде тепла, должны быть полностью отведены в среду, охлаждающую трансформатор. На пути движения тепла в масляном трансформаторе существенное значение имеют два перепада температуры — между поверхностью обмотки и охлаждающим ее маслом вп.м и между поверхностью стенки бака и охлаждающим ее воздухом вб.в. Перепад во.м прямо зависит от плотности теплового потока на поверхности, т. е. от потерь в обмотке Р, отнесенных к единице ее поверхности ПОХЛ <= Р/ПОХЛ, Вт/м2. Перепад температуры δо.м обычно ограничивают значением 23—25 °С путем ограничения плотности теплового потока φ, что при верхнем пределе превышения средней температуры обмотки над воздухом, ограниченном по ГОСТ значением ±65°С, позволяет получить среднее превышение температуры стенки бака над воздухом не менее вб,в~35-38°С. Увеличение перепада δО,М сверх 25 °С приведет к необходимости рассчитывать охлаждаемую поверхность бака на меньший перепад температуры δб,в, т. е. к существенному увеличению размеров и массы материалов системы охлаждения трансформатора. В сухих трансформаторах с естественным воздушным охлаждением имеются два перепада температуры — внутри обмотки В0 и на ее поверхности, охлаждаемой воздухом Вов. В сумме эти два перепада не должны быть больше значения, установленного ГОСТ 11677-85 для каждого класса нагревостойкости изоляции обмоток от 60 °С при классе А до 125 °С при классе Н.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-10; просмотров: 377; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.239.157 (0.006 с.) |