Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Многослойные цилиндрические обмотки из круглого проводаСодержание книги
Поиск на нашем сайте
В трансформаторах мощностью от 25 до 630 кВА нашли широкое применение многослойные цилиндрические обмотки из круглого медного или алюминиевого провода Рис. 5.20. Многослойная цилиндрическая обмотка из круглого провода. Рис. 5.21. Изоляция в торцовой части многослойной цилиндрической обмотки из круглого провода. в качестве обмоток ВН при напряжениях от 3 до 35 кВ и обмоток НН при напряжениях от 3 до 10 кВ (рис. 5.20). В многослойной цилиндрической обмотке с последовательным соединением слоев вследствие значительного числа витков в слое между соседними витками, лежащими в разных слоях, могут возникнуть значительные напряжения. Так, между первым витком какого-либо слоя и рядом лежащим последним витком последующего слоя при нормальной работе трансформатора возникает рабочее, а при испытании индуктированным напряжением — испытательное напряжение двух слоев обмотки. В трансформаторах мощностью до 630 кВА при классе напряжения от 3 до 35 кВ суммарное рабочее напряжение двух слоев может достигнуть 5000—6000 В, а испытательное 10 000—12 000 В. Собственная изоляция провода в этих условиях оказывается недостаточной, и для обеспечения электрической прочности обмотки приходится применять дополнительную изоляцию между слоями. В качестве такой междуслойной изоляции с успехом применяется кабельная бумага, положенная в несколько слоев (рис. 5.21). Применение меньшего числа слоев более толстого электроизоляционного картона не оправдывает себя, так как картон менее эластичен, чем кабельная бумага, и при намотке сильно натянутого провода при не совсем гладкой поверхности обмотки иногда дает местные изломы, что в дальнейшем приводит к пробою междуслойной изоляции. Для предохранения обмотки от разряда между соседними или вообще различными слоями по ее торцовой поверхности высота междуелойной изоляции делается обычно большей, чем высота слоя обмотки, на 20—50 мм (на две стороны), благодаря чему искусственно увеличивается длина пути возможного разряда. Для выравнивания высоты слоя обмотки с высотой междуслойной изоляции и создания твердой опорной поверхности обмотки к каждому слою обмотки прикрепляются так называемые бортики, т. е. свернутые в кольцо полоски электроизоляционного картона толщиной, равной толщине слоя. При намотке обмотки эти бортики предварительно приклеиваются к более широким (40—50 мм) полоскам телефонной бумаги (толщиной 0,05 мм), а затем эти полоски укладываются на междуслойную изоляцию и прижимаются крайними витками следующего слоя. Витки, лежащие во внутренних слоях многослойной цилиндрической обмотки, не имеют непосредственного соприкосновения с охлаждающей средой — маслом или воздухом. Тепло, выделяющееся в этих витках, должно проходить в радиальном направлении через толщу слоев проводов и междуслойной изоляции, отделяющих эти слои от охлаждающего канала. При прохождении теплового потока через толщу обмотки возникает внутренний перепад температуры тем больший, чем больше число слоев обмотки и толщина междуслойной изоляции, и достигающий в отдельных случаях 10—12°С. Для уменьшения этого перепада температуры стараются увеличить общую поверхность охлаждения и уменьшить радиальный размер обмотки. Этого можно достигнуть, разделив всю обмотку на две катушки с осевым каналом между ними. Рис 5.22. Различные варианты выполнения многослойной цилиндрической обмотки: а – обмотка ВН на цилиндре; б – обмотка ВН на рейках; в – обмотка НН; г – обмотка ВН на цилиндре с каналом; д – обмотка ВН на рейках с каналом В обмотках НН, располагаемых между стержнем и обмоткой ВН, такой охлаждающий канал делит обмотку на две катушки с одинаковым числом слоев (рис. 5.22, в). В обмотках ВН, у которых внешняя поверхность свободно обтекается маслом и охлаждается лучше, чем внутренние поверхности, число слоев внутренней катушки составляет от 1/3 До 2/3 общего числа слоев. Расположение обмотки на цилиндре для различных вариантов может быть выполнено по рис. 5.22, а, б, г, д. С учетом этого перепада температуры рекомендуется ограничивать перепад на охлаждаемой поверхности обмотки и допускать плотность теплового потока не более 800—1000 Вт/м2. Уменьшению внутреннего перепада температуры способствует также пропитка обмотки лаком. Главной целью пропитки является склеивание витков обмотки между собой и с междуслойной изоляцией, чем создается повышение механической прочности обмотки при коротких замыканиях трансформатора. Электрическая прочность внутренней изоляции обмотки от пропитки лаком не повышается, а в рассматриваемых многослойных цилиндрических обмотках, пропитываемых обычно простым погружением в лак с выдержкой в лаке без вакуумирования, даже несколько понижается. Понижение электрической прочности внутренней изоляции обмотки в этом случае объясняется пузырьками воздуха, остающимися главным образом между листами междуслойной изоляции. Для более полного удаления воздуха из обмотки рекомендуется производить пропитку лаком под вакуумом. Многослойная цилиндрическая обмотка может быть намотана одним круглым проводом, а также, редко, двумя параллельными круглыми проводами. Ввиду того что все параллельные провода каждого витка располагаются у такой обмотки в одном и том же слое и, следовательно, сцеплены практически с одной и той же частью потока рассеяния, обмотка этого типа при последовательном соединении слоев не требует транспозиции параллельных проводов. Пределы применения обмотки этого типа по току определяются сортаментом круглого медного обмоточного провода от наименьшего сечения 0,1134 мм2 при диаметре 0,38 мм до двух параллельных проводов наибольшего диаметра 5,20 мм и сечения 2х21,22 = 42,44 мм2. Это соответствует максимально возможному току обмотки одного стержня до 40—60 А при одном проводе и до 80—120 А при двух параллельных проводах в медных обмотках. Круглый алюминиевый провод применяется диаметрами от 1,32 до 8 мм и сечениями от 1,37 до 50,24 мм2, что соответствует максимально возможному току обмотки 120—130 А, поскольку обмотки из провода диаметром 6— 8 мм наматываются только в один провод. Так же как и в других цилиндрических обмотках, высота каждого слоя (осевой размер обмотки) определяется числом витков в слое, увеличенным на единицу. В случае применения многослойной цилиндрической обмотки в качестве обмотки ВН витки, служащие для регулирования напряжения, располагаются в наружном слое обмотки или при большом числе слоев в двух наружных слоях. Регулировочные ответвления часто делаются путем вывода петли обмоточного провода без обрыва его (рис. 5.23, в). Эти ответвления выводятся к верхней торцовой части обмотки и укладываются под верхний слой витков по образующей или под хлопчатобумажную киперную ленту, которой обмотка обматывается по наружной цилиндрической поверхности для повышения механической прочности (рис. 5.23, а к б). Для изоляции ответвления от слоев обмотки, между которыми оно проходит, обычно применяют ся полоски электроизоляционного картона толщиной 0,5 и шириной 20—30 мм. Рис. 5.23 Расположение регулировочных ответвлений в многослойной цилиндрической обмотке а – под верхним слоем витков б – под бандажом из киперной ленты в – выполнение ответвления Витки, отключаемые при регулировании напряжения на каждой ступени, должны быть разделены на две равные группы, расположенные в верхней и нижней половинах слоя симметрично относительно середины высоты обмотки. Такое расположение уменьшает осевые силы, действующие на всю обмотку, и силы, действующие на отдельные витки внешнего слоя при коротком замыкании трансформатора. По условиям механической прочности применение многослойной обмотки из круглого провода ограничивается трансформаторами мощностью не более 630 кВА. Межслойная изоляция рассчитывается по суммарному рабочему напряжению двух слоев обмотки. Обмотки с рабочим напряжением до 11—15 кВ оказываются при этом достаточно прочными и при воздействии на них импульсных перенапряжений. В обмотках с рабочим напряжением 35 кВ для сглаживания неравномерного распределения напряжений при импульсах хорошие результаты дает размещение под внутренним слоем обмотки металлического немагнитного экрана (рис. 5.21) — медного, латунного или алюминиевого листа толщиной 0,4—0,5 мм, свернутого в виде разрезанного цилиндра. Разрез шириной 30—40 мм по образующей цилиндра делается во избежание образования из цилиндра короткозамкнутого витка. Высота экрана принимается обычно равной высоте обмотки l. Экран изолируется от первого (внутреннего) слоя обмотки межслойной изоляцией из кабельной бумаги. Такая же изоляция укладывается под экран. При наличии экрана ввод линейного конца делается к внутреннему слою обмотки и экран электрически соединяется с началом обмотки. В обмотках напряжением 35 кВ имеющих экран, отпадает необходимость усиления изоляции входных витков (или слоев). Во избежание пробоя витковой изоляции вследствие подъема напряжения у нейтрали при воздействии на обмотку импульсного перенапряжения усиливается изоляция последних четырех-пяти витков на каждой ступени регулирования напряжения. В производстве многослойная цилиндрическая обмотка из круглого провода для трансформаторов мощностью до 630 кВА является более простой и дешевой по сравнению с применяемой иногда непрерывной катушечной обмоткой, поскольку позволяет вести намотку непрерывным проводом без перекладки витков и точной укладки их в катушки, с частотой вращения оправки, на которой наматывается обмотка, до 100—200 об/мин. Кроме простоты намотки этот тип представляет большие удобства в выполнении регулировочных ответвлений. При выполнении изоляционного цилиндра между обмотками ВН и НН в виде «мягкого» цилиндра, намотанного из рольного электроизоляционного картона или кабельной бумаги, обмотки ВН и НН на один стержень трансформатора могут быть изготовлены в обмоточном цехе в виде готового комплекта, что в значительной мере облегчает установку обмоток на стержень и упрощает сборку трансформатора. Многослойной цилиндрической катушечной обмоткой называется обмотка, составленная из ряда отдельных, расположенных в осевом направлении катушек, представляющих собой многослойные цилиндрические обмотки. Рис. 5.24 Двойная (а) и одинарная (б) катушки. Межслойная изоляция картон (а) и кабельная бумага (б) Многослойная цилиндрическая катушечная обмотка, как правило, выполняется из одного круглого провода без применения параллельных проводов. Для удобства сборки такая обмотка обычно выполняется в виде спаренных катушек, из которых одна наматывается правой, а другая левой намоткой. Применение различного направления намотки в соседних катушках позволяет производить их последовательное соединение, соединяя вместе одноименные, например внутренние, концы. При этом начало и конец каждой такой пары катушек будут находиться на наружной поверхности обмотки. Такие две последовательно соединенные катушки правой и левой намоток, имеющих начало и конец на наружной поверхности, комплектно изготовленные, носят название двойной катушки (рис. 5.24, а). Каждая из двух одинарных простых катушек, входящих в двойную, может отличаться от другой катушки не только направлением намотки, но и числом витков, изоляцией, витковой и межслойной, а в отдельных случаях даже сечением провода. Применение в многослойной цилиндрической катушечной обмотке двойных катушек обусловливает обязательное четное число одинарных катушек на стержне трансформатора. ВИНТОВЫЕ ОБМОТКИ Одноходовой винтовой обмоткой трансформатора называется обмотка, витки которой следуют один за другим в осевом направлении по винтовой линии, а сечение каждого витка образовано сечениями нескольких параллельных проводов прямоугольного сечения, расположенными в один ряд в радиальном направлении обмотки (рис. 5.25, а). Обычно витки обмотки разделяются радиальными масляными или воздушными охлаждающими каналами. В некоторых обмотках эти каналы могут быть сделаны через два витка. Винтовая одноходовая обмотка может быть намотана и без радиальных каналов с плотным прилеганием витка к витку. Обмотка, состоящая из двух (или более) одноходовых обмоток, взаимно расположенных подобно ходам резьбы двухходового (многоходового) винта, назыается двухходовой (многоходовой) винтовой обмоткой. Сечение витка при этом образуется общим поперечным сечением проводов всех ходов. Эта обмотка также может быть выполнена с радиальными каналами между всеми витками и внутри витков между образующими их ходами, или с каналами только между витками и без каналов внутри витков, или совсем без радиальных каналов с плотным прилеганием всех ходов. Винтовая обмотка выполняется только из прямоугольного провода. При этом все параллельные провода этой обмотки обязательно должны иметь равные не только площади, но и размеры поперечного сечения. При несоблюдении этого правила становится невозможным уравнивание Рис. 5.25. Винтовая обмотка: а – одноходовая их шести витков; б – двухходовая из четырех витков. сопротивлений параллельных проводов путем их перекладки в процессе намотки обмотки. В ряде случаев, когда сечение витка по расчету получается весьма значительным, могут быть приняты две группы параллельных проводов и обмотка выполнена в виде двухходовой. На рис. 5.25, б изображена двухходовая винтовая обмотка. Сравнительно редко применяется четырехходовая обмотка. Обе группы проводов у начала и конца обмотки соединяются параллельно. В большинстве случаев в двухходовых обмотках радиальные каналы выполняются как между витками, так и внутри витка между группами проводов (рис. 5.26, б). Иногда для экономии места по высоте обмотки радиальные каналы делаются только между витками и обе группы проводов в каждом витке наматываются вплотную с прокладкой между группами толщиной 0,5— 1,0 мм (см. рис. 5.26, в). Прокладка обеспечивает механическую устойчивость обмотки. Двух- и четырехходовая винтовая обмотка может быть также выполнена совсем без радиальных каналов и без прокладок в витках и между витками (рис. 5.26, г). Обычно винтовая обмотка наматывается на жестком бумажно-бакелитовом цилиндре на рейках, расположенных по образующим цилиндра. Для мощных трансформаторов Рис. 5.26. Сечение витка винтовой обмотки: а – одноходовой; б – двухходовой с каналом между двумя группами проводов; в – двухходовой бех канала внутри витка; г – двухходовой без радиальных каналов. (более 10 000 кВ*А на один стержень) обмотка может быть намотана на специальной оправке, затем снята с нее и при насадке на стержень изолирована от него мягким цилиндром из электроизоляционного картона. Радиальные каналы между витками в обоих случаях образуются междувитковыми прокладками из электроизоляционного картона, нанизываемыми на рейки. В винтовой обмотке параллельные провода наматываются на цилиндрических поверхностях с разными диаметрами. Вследствие этого активные сопротивления параллельных проводов получаются неравными. В трансформаторах с концентрическим расположением обмоток ВН и НН поле рассеяния направлено в осевом направлении обмоток. В радиальном направлении по ширине каждой из обмоток индукция поля рассеяния возрастает по прямой линии от внешнего края обмотки к каналу между обмотками ВН и НН (рис. 5.27). Различное положение проводов в поле Рис. 5.27. Схема транспозиций параллельных проводов в одноходовой обмотке: а — четное число проводов; б — нечетное число проводов рассеяния обмотки приводит к неравенству реактивных, а следовательно, и полных сопротивлений параллельных проводов. Для выравнивания полных сопротивлений проводов во избежание неравномерного распределения тока в винтовой обмотке обязательно должна производиться транспозиция (перекладка) проводов. В одноходовой обмотке обычно применяют комбинацию двух видов транспозиции— групповую, когда все параллельные провода делятся на две или большее число групп и изменяется взаимное расположение этих групп без изменения расположения проводов в группе, и общую, при которой изменяется взаимное расположение всех проводов. При применении транспозиции этих видов обмотка делится по длине на четыре равных участка, содержащих по 1/4 всех витков обмотки. На границах этих участков производится три транспозиции — две групповые на 1/4 и 3/4 общего числа витков, считая от начала обмотки, и одна общая на 2/4 общего числа витков. В групповых транспозициях все параллельные провода делятся на две равные группы (при нечетном числе проводов одна из групп имеет на один провод больше, чем другая). В общих транспозициях каждый провод перекладывается самостоятельно. Принципиальная схема транспозиции для одноходовой обмотки из шести параллельных проводов показана на рис. 5.27, а. Такой же способ транспозиции может быть применен и при нечетном числе параллельных проводов, например при пяти проводах (рис. 5.27, б). Для получения правильной транспозиции, дающей действительное выравнивание сопротивлений проводов, необходимо группировать провода так, чтобы в обеих групповых транспозициях в одни и те же группы соединялись одни и те же проводники, как это показано на рис. 5.27. Чтобы проверить правильность схемы транспозиций, достаточно для каждого провода просуммировать номера мест, которые он занимает в витке на всех четырех участках обмотки. Так по рис. 5.27, а для провода 1, выделенного жирной линией, эта сумма дает 1+4+3+6=14, по рис. 5.27, б для соответствующего провода 1+4+2+5=12. В правильно транспонированной обмотке такие суммы для всех параллельных проводов должны получаться равными между собой. Нетрудно убедиться, что в схемах транспозиций обмоток, изображенных на рис. 5.27, это правило соблюдается. Необходимо заметить, что такая транспозиция является совершенной только для четырех параллельных проводов. При большем числе проводов эта транспозиция не является полностью совершенной, однако у силовых трансформаторов общего назначения дает почти равномерное распределение тока между параллельными проводами и относительно малые добавочные потери. При числе параллельных проводов обмотки от 12—15 и больше применяются и более сложные схемы транспозиций [6]. Внешний вид общей и групповой транспозиции показан на рис. 5.28. Как видно из рисунка, каждая такая транспозиция увеличивает осевой размер обмотки на высоту витка и радиального канала. Таким образом, общий осевой размер (высота) обмотки при двух групповых и одной общей транспозициях увеличивается на высоту трех витков и трех каналов. Следует также помнить, что за счет совпадения на одной образующей начала и конца обмотки осевой размер увеличивается еще на высоту одного витка и одного канала. В двухходовой винтовой обмотке в каждом ее ходу могут быть также сделаны групповые и общие транспозиции. Однако в такой обмотке можно применить и другой, более совершенный вид транспозиции. Сечение витка такой обмотки, изображенное на рис. 5.29, состоит из двух групп проводов. Идея транспозиции заключается в постепенном круговом перемещении проводов в сечении витка по мере намотки обмотки так, чтобы каждый провод побывал во всех возможных положениях, проходя в них равные отрезки (выражаемые обычно в числе витков). В отличие от групповой и общей транспозиций, сосредоточенных в трех точках обмотки, такую транспозицию можно назвать равномерно распределенной. Обычно в двухходовой обмотке число транспозиций делают равным числу параллельных проводов или их удвоенному числу. На рис. 5.29 показана схема равномерно распределенной транспозиции в двухходовой обмотке из восьми параллельных проводов. Во избежание усложнения чертежа на схеме показано перемещение только двух проводов — 1 и 5. Расстояния между двумя транспозициями при числе параллельных проводов nв принимаются равными 1/nв общего числа витков обмотки, а крайние участки у начала и конца обмотки вполовину короче, т. е. 1/2 nв общего числа витков. Рис.5.28. Увеличение высоты одноходовой обмотки при транспозиции обмотки из четырех проводов: а – групповая транспозиция; б – общая транспозиция Рис.5.29. Схема равномерно распределенной транспозиции в двухходовой обмотке из восьми параллельных проводов По схеме рис. 5.29 нетрудно убедиться в том, что при таком распределении транспозиций каждый провод по мере прохождения по длине обмотки пройдет каждое из nв возможных положений в сечении витка на 1/nв общей длины обмотки. Практически равномерно распределенная транспозиция выполняется так, как показано на рис. 5.30. Верхний провод 4 левой группы отгибается вправо и становится верх ним проводом правой группы. Рис. 5.30. Выполнение равномерно распределенной транспозиции Одновременно нижний провод 8 правой группы переходит нижним проводом в левую группу. Провода левой группы 1, 2 и 3 поднимаются на одно положение вверх, а провода 5, 6 и 7 правой опускаются на одно положение вниз. Равномерно распределенная транспозиция в двухходовой обмотке может быть сделана при любом числе параллельных проводов и дает более полное уравнение их сопротивлений, чем групповые и общие транспозиции. Другое преимущество равномерно распределенной транспозиции заключается в том, что она не требует добавочного места по высоте обмотки. Однако при определении изоляционных расстояний следует учитывать, что в местах транспозиции радиальный размер обмотки увеличивается на одну толщину провода. В четырехходовой обмотке равномерно распределенная транспозиция выполняется самостоятельно в каждой паре ходов. Поэтому трехходовая винтовая обмотка с такой транспозицией обычно не применяется, но винтовая обмотка с любым числом ходов может быть выполнена из транспонированного провода (см. § 5.2). При этом отпадает необходимость в дополнительной транспозиции параллельных проводников, помимо той, которая сделана в самом проводе. Плотность тока в обмотках силовых трансформаторов, выпускаемых в последние годы с относительно малыми потерями короткого замыкания, составляет в медных обмотках около 2·106 - 3·106 (иногда до 3,5·106) и в алюминиевых 1,2·106 - 2·106А/м2. При такой плотности тока потери в единице объема обмотки и плотность теплового потока на осевых и радиальных охлаждаемых поверхностях витков невелики и возникает возможность существенного уменьшения числа каналов в обмотке вплоть до полного отказа от горизонтальных каналов. Винтовая обмотка без горизонтальных каналов с плотным прилеганием витков в осевом направлении может быть одно-, двух- и четырехходовой с обычными для таких обмоток транспозициями. Такая обмотка наматывается на цилиндре на рейках типа рис. 5.8, а и б или на оправке без реек и без прокладок между ходами. Не исключена намотка двухслойной винтовой обмотки, т. е. двух концентрических винтовых обмоток левого и правого направлений намотки, соединяемых последовательно. При использовании винтовой обмотки без горизонтальных каналов следует принимать во внимание то, что плотность теплового потока на охлаждаемой поверхности обмотки существенно возрастает и ее не рекомендуется допускать более 1200—1400 Вт/м2. При этом превышение температуры поверхности обмотки, имеющей только вертикально расположенные поверхности, охлаждаемые маслом, над температурой масла составляет 21—23°С, что примерно на 20 % ниже, чем в обмотке с витками, имеющими горизонтальные и вертикальные поверхности. Необходимо также учитывать, что в обмотке без горизонтальных каналов добавочные потери могут быть в 1,5—2 раза больше, чем в обмотке с тем же числом витков и с тем же числом, размерами и расположением параллельных проводов, но с горизонтальными каналами. В механическом отношении при возникновении осевых механических сил винтовая обмотка является значительно более прочной, чем одно- и двухслойная цилиндрическая. Параллельные провода в каждом витке располагаются в ней не в осевом, а в радиальном направлении, образуя относительно большую опорную поверхность. Механическая жесткость обмотки усиливается рейками, идущими по всей длине обмотки, и связанными с ними горизонтальными прокладками, плотно зажатыми между витками обмотки. В трансформаторах с ПБВ часто регулировочные витки обмотки ВН располагаются в середине ее высоты, что при работе обмотки ВН на низших ступенях регулирования напряжения приводит к возникновению в зоне отключенных витков поперечного магнитного поля и значительных осевых сил при коротком замыкании (см. § 7.3). Винтовая обмотка позволяет существенно ограничить эти силы путем разгона витков в середине ее высоты в зоне размещения отключаемых регулировочных витков обмотки ВН. Разгон витков применяется в трансформаторах с мощностью S≥1000 кВ·А и достигается путем увеличения двух-трех радиальных каналов в середине высоты обмотки НН до 15—20мм. Достаточную механическую прочность обмотка получает только при некотором минимальном сечении витка, не менее 75—100мм2, что соответствует току около 300А для медных и 150—200А для алюминиевых обмоток. Этот нижний предел допустимого сечения витка и тока обмотки соответствует силовым трансформаторам с мощностью S = 160—1000 кВ·А. При больших мощностях нижним пределом применения винтовой обмотки считается обычно 400—500 А. По соображениям механической прочности, а также удобства выполнения транспозиций число параллельных проводов принимается обычно не менее четырех. Наличие масляных каналов между соседними витками обеспечивает высокую электрическую прочность винтовой обмотки, и она находит широкое применение как обмотка НН в трансформаторах с напряжением НН от 230В до 35кВ включительно. На стороне ВН винтовая обмотка совершенно не нашла применения ввиду неудобства выполнения ответвлений для регулирования напряжения. В производстве винтовая обмотка существенно дороже многослойной цилиндрической обмотки из прямоугольного провода. Винтовая обмотка используется также в качестве обмотки НН в сухих трансформаторах с естественным воздушным охлаждением при мощностях от 250 до 1600 кВ·А и выборе размеров радиальных и осевых воздушных каналов в соответствии с требованием табл. 9.26 и 9.2в. КАТУШЕЧНЫЕ ОБМОТКИ Обмотка, состоящая из ряда последовательно соединенных катушек, намотанных в виде плоских спиралей из одного или более проводов прямоугольного сечения и расположенных в осевом направлении обмотки, с радиальными каналами между всеми или частью катушек называется катушечной обмоткой. Если катушечная обмотка наматывается непрерывным проводом или несколькими непрерывными параллельными проводами, она называется непрерывной катушечной обмоткой (рис. 5.31). Рис. 5.31. Непрерывная катушечная обмотка Рис. 5.32. Переход между катушками с транспозицией трех параллельных проводов Катушечная обмотка, собранная из отдельно намотанных катушек, называется дисковой катушечной обмоткой. Непрерывная катушечная обмотка не имеет обрывов и паек провода. Все переходы из одной катушки в другую осуществляются кратчайшим путем по направлению внутренней или внешней образующей обмотки. Такая обмотка может быть намотана также из двух, трех, а иногда и более параллельных проводов. В этом случае, во избежание излишнего увеличения радиального размера обмотки в месте перехода из катушки в катушку, каждый из параллельных проводов переходит самостоятельно так, как изображено на рис. 5.32. При таком переходе провода меняются местами: наружный провод катушки переходит - внутрь, внутренний наружу и т. д. При этом одновременно осуществляется и транспозиция проводов, необходимая для уравнивания полных сопротивлений параллельных проводов. Необходимость транспозиции обусловливается тем, что параллельные провода наматываются на окружностях разных диаметров и находятся в различных зонах поля рассеяния. Вследствие значительного угла изгиба провода на ребро в местах перехода из одной катушки в другую, изоляция проводов может быть повреждена. Поэтому для обеспечения надлежащей электрической прочности обычно применяют в местах перехода добавочную изоляцию провода в виде оплетки полосками кабельной бумаги или лакоткани или подвязки изоляционных коробочек из электроизоляционного картона. Непрерывная катушечная обмотка может быть намотана на жестком бумажно-бакелитовом цилиндре, на рейках, расположенных по образующим цилиндра. При применении мягких изоляционных цилиндров из электроизоляционного картона обмотка наматывается на станке на рейках, расположенных на временной цилиндрической оправке без изоляционного цилиндра. В этом случае цилиндр наматывается при сборке трансформатора перед насадкой соответствующей обмотки. Для образования радиальных междукатушечных каналов применяются прокладки, штампованные из электроизоляционного картона, как показано на рис. 5.9 и 5.10. Радиальные каналы в обмотке обычно выполняются между всеми катушками, однако в трансформаторах с пониженными потерями короткого замыкания и в алюминиевых обмотках (§ 5.2 и 5.7) иногда каналы могут быть сделаны через две катушки. В этом случае половина радиальных каналов между катушками заменяется разрезными шайбами по две шайбы толщиной 0,5 мм взамен каждого канала. Пара катушек, разделенных шайбами или радиальным каналом, называется двойной катушкой. Переход провода из одной катушки в другую в непрерывной катушечной обмотке делается в промежутках между прокладками, образующими радиальные каналы. Число витков в каждой катушке, указываемое в расчетной записке, может быть как целым, так и дробным. В последнем случае знаменатель дроби указывает число междукатушечных прокладок (реек) по окружности обмотки. Так, при 16 прокладках (рейках) в обмотке правильным будет указание намотать в катушке, например, 84/16 витка, а не 81/4 витка. При намотке такой обмотки на станке наматывают восемь полных витков, а потом отсчитывают четыре промежутка между прокладками и делают переход на следующую катушку. Максимальный радиальный размер обмотки при дробном числе витков определяется числом целых витков плюс один виток. В разобранном примере максимальный радиальный размер равен 8+1=9 толщинам провода с изоляцией. Рис. 5.33. Двойная катушка катушечной обмотки Возможность намотки в катушке дробного числа витков всегда позволяет легко разместить полученное по расчету число витков по катушкам, однако для упрощения намотки обмотки на станке рекомендуется рассчитывать катушки с целым числом витков. В одной обмотке рекомендуется применять не более четырех типов катушек с разным числом витков, а общее число катушек брать четным. Иногда по условиям сборки или изоляции обмоток, например в обмотках на 220 кВ и более, непрерывная намотка катушечных обмоток неудобна. В этом случае обмотка изготавливается в виде комплекта двойных катушек (рис. 5.33). Витки, служащие для регулирования напряжения в обмотках ВН, должны располагаться в отдельных катушках так, чтобы регулировочные ответвления выполнялись на переходах между катушками, а не от средних витков катушки. Также в отдельных катушках должны размещаться входные витки с усиленной изоляцией, которая может быть выполнена в виде усиленной изоляции провода или оплетки всей катушки снаружи лентой из кабельной бумаги или лакоткани. Усиленная изоляция между слоями (витками) в виде прокладок, как правило, не применяется. Катушки с различным числом витков — основные, регулировочные, с усиленной изоляцией — принято для удобства обозначать различными буквами алфавита. При размещении витков обмотки в катушки необходимо следить за тем, чтобы радиальные размеры катушек различных типов были приблизительно равными. Рекомендуется это размещение производить так, чтобы радиальные размеры наиболее широкой и наиболее узкой катушек обмотки стержня, в том числе и регулировочных, и с усиленной изоляцией, отличались не более чем на двойную толщину провода. В тех случаях, когда этого нельзя добиться простым перемещением витков, например в регулировочных катушках, допускается выравнивание радиального размера отдельных катушек путем вматывания между их витками полосок электроизоляционного картона. Намотка непрерывной катушечной обмотки из прямоугольного провода имеет свои особенности. Для того чтобы вести обмотку, не прерывая провода и делать переход провода из катушки, в катушку то у внутреннего, то у внешнего края катушки, витки половины катушек (обычно нечетных) после намотки катушки перекладываются так, что внутренний виток оказывается наружным, а наружный внутренним. Остальные катушки (обычно четные) наматываются без перекладки [5]. В механическом отношении непрерывная катушечная обмотка является одной из самых прочных обмоток, применяемых в трансформаторах. С увеличением мощности трансформатора и ростом осевой составляющей механических сил при коротком замыкании растут также радиальный размер катушек обмотки и ее механическая стойкость. Таким образом, условия механической прочности не ставят практически никаких пределов применению обмотки этого типа, и она может применяться на очень большом диапазоне мощности трансформаторов от 160 до 1000000 кВ·А. Обмотка этого типа с успехом применяется также и в широком диапазоне напряжений от 2-3 до 500 кВ и более. При достаточно высоких напряжениях усложняется защита обмоток от импульсных атмосферных перенапряжений, вследствие чего обмотку приходится разделять на части, наматываемые непрерывно, и на части, состоящие из отдельно наматываемых катушек. С этой целью часть обмотки может быть сделана также переплетенной, когда порядок последовательного соединения витков отличается от последовательности их размещения в катушках, например, когда в двух соседних катушках соединяются последовательно сначала все нечетные витки, а затем последовательно с ними все четные. Возможны и другие способы получения переплетенной обмотки (см. § 4.5). Непрерывная катушечная обмотка может быть применена при всех токах нагрузки, когда при выбранной плотности тока и достаточном числе витков сечение проводника получается равным или большим, чем минимальное по сортаменту сечение прямоугольного медного провода 5,04 или алюминиевого провода 6,39 мм2. При наименьшей применяемой плотности тока в обмотках это соответствует нижнему пределу рабочего тока обмотки в медном проводе 15—18 и в алюминиевом проводе 10—13 А. Плотность теплового потока на поверхности катушечных обмоток обычно допускают не более 1200—1400 Вт/м2. В производстве непрерывная катушечная обмотка при равном числе витков и сечении витка несколько сложнее и дороже, чем одно- и двухслойная цилиндрическая из прямоугольного провода или многослойная цилиндрическая из круглого или прямоугольного провода. Поэтому в трансформаторах с мощностью на один стержень до 250 кВ·А предпочитают применять цилиндрические обмотки из круглого провода. В трансформаторах большей мощности, где требования механической прочности играют решающую роль, непрерывная катушечная обмотка является наиболее употребительной наряду с многослойной цилиндрической из прямоугольного провода. Благодаря высокой механическ
|
||||
Последнее изменение этой страницы: 2017-02-10; просмотров: 496; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.7.165 (0.011 с.) |