Аллергические реакции (гиперчувствительность) немедленного типа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аллергические реакции (гиперчувствительность) немедленного типа.



2. Аллергические реакции (гиперчувствительность) замедленного типа.

В основу классификации положено время появления реакции после контакта с аллергеном: реакции немедленного типа развиваются через 15-20 мин, замедленного типа - через 24-48 ч.

Эта классификация, разработанная в клинике, не охватывала всего разнообразия проявлений аллергии, в связи с чем возникла необходимость классифицировать аллергические реакции с учетом особенностей их патогенеза.

Первую попытку разделить аллергические реакции с учетом особенностей их патогенеза предпринял А.Д. Адо (1963). Он разделил эти реакции по патогенезу на две группы:

1. Истинные аллергические реакции.

2. Ложные аллергические реакции (псевдоаллергические).

При истинных аллергических реакциях развивается повышенная чувствительность (сенсибилизация) к впервые попавшему в организм аллергену. При повторном воздействии на уже сенсибилизированный организм аллерген соединяется с образовавшимися антителами или лимфоцитами.

Ложные аллергические реакции возникают при первом контакте с аллергеном без предшествующей сенсибилизации. По внешним проявлениям они лишь напоминают аллергические, но не имеют основного, ведущего (иммунологического) механизма, характерного для истинных аллергических болезней.

В настоящее время аллергические реакции делятся с учетом классификации реакций повреждения (гиперчувствительности), предложенной в 1969 г. Gell и Coombs и позднее дополненной Ройтом. Данная классификация основана на особенностях механизма иммунного повреждения. С учетом особенностей развития иммунного ответа выделяют 5 основных типов иммунного повреждения (иммунопатологических реакций) (табл.27, рис.39).

I тип (реагиновый, анафилактический) связан с образованием особого типа антител (IgE, IgG4), имеющих высокое сродство (аффинность) к определенным клеткам (тучным, базофилам), так называемые цитотропные антитела. Антиген, вступая во взаимодействие с фиксированными на клетках антителами, приводит к секреции предсуществующих и вновь образующихся БАВ (медиаторов), которые вызывают повышение проницаемости сосудов, отек ткани, гиперсекрецию слизи, сокращение гладкой мускулатуры. Типичным примером этого типа повреждения являются такие аллергические реакции, как атопическая бронхиальная астма, сезонные аллергические риниты, конъюнктивиты, анафилактический шок, аллергическая крапивница, отек Квинке и др.

II тип (цитотоксический, или цитолитический) связан с образованием антител классов IgG (кроме IgG4) и IgM. Антигенами служат компоненты естественных клеточных мембран или вещества, сорбированные на клеточной поверхности, к которым образуются антитела. Образующийся на поверхности клеток комплекс антиген-антитело активирует систему комплемента, в результате чего возникают повреждение и лизис клеток. Примерами такого типа цитотоксического повреждения являются:

аллергические реакции на некоторые лекарственные вещества - лекарственная тромбоцитопеническая пурпура, аллергический лекарственный агранулоцитоз (антигеном является лекарственный препарат или продукт его метаболизма, включенный в состав клеточной поверхности); гемотрансфузионные реакции, возникающие вследствие несовместимости групп крови (антигенами являются естественные клеточные структуры);

аутоиммунные заболевания - аутоиммунная гемолитическая анемия, тромбоцитопения, миастения гравис и др.

III тип иммунного повреждения связан с образованием токсических иммунных комплексов (антиген-антитело: IgM, IgG1, IgG3). Примером являются: аллергические реакции - экзогенный аллергический альвеолит (при попадании ингаляционных антигенов), сывороточная болезнь, феномен Артюса; аутоиммунные заболевания (системная красная волчанка, системные васкулиты и др.).

IV тип иммунного повреждения - клеточно-опосредованный ( ГЗТ ). К этому типу принадлежат: аллергия, формирующаяся при некоторых инфекционных заболеваниях (туберкулез, проказа, лепра, бруцеллез, сифилис), аллергический контактный дерматит, реакция отторжения трансплантата и др.; аутоиммунные заболевания (ревматоидный артрит, рассеянный склероз).

V тип иммунного повреждения (антирецепторный) связан с наличием антител (главным образом IgG) к физиологически важным детерминантам клеточной мембраны - рецепторам (b-адренорецепторам, ацетилхолиновым и инсулиновым рецепторам, рецепторам для ТТГ). V тип иммунного повреждения играет особую роль при аутоиммунизации. Реакция АГ (рецептор) + АТ может вести либо к стимуляции, либо к блокаде эффекта.

Пятый тип иммунного повреждения является ведущим в развитии иммунного типа сахарного диабета, иммунных заболеваний щитовидной железы, гипофиза и др. В развитии бронхиальной астмы, атопического дерматита и некоторых других антирецепторный тип повреждения может быть одним из механизмов, осложняющих течение заболевания.

При многих аллергических заболеваниях возможно одновременно обнаружить механизмы различных типов повреждения. Например, при анафилактическом шоке участвуют механизмы I и III типов, при аутоиммунных заболеваниях - реакции II и IV типов и т. д. Однако для патогенетически обоснованной терапии всегда важно установить ведущий механизм.

Аллергия у человека имеет чрезвычайно многообразные проявления: бронхиальная астма, поллинозы (аллергический ринит, конъюнктивит), крапивница, аллергические дерматиты, отек Квинке, анафилактический шок, сывороточная болезнь, поствакцинальные аллергические осложнения (лихорадка, гиперемия, отек, сыпь, феномен Артюса).

Наряду с самостоятельными, чисто аллергическими заболеваниями, существуют заболевания (главным образом, инфекционные), где аллергические реакции и процессы участвуют как сопутствующие или вторичные механизмы: туберкулез, бруцеллез, лепра, скарлатина и ряд других.

 

7.5. ОБЩИЙ ПАТОГЕНЕЗ АЛЛЕРГИЧЕСКИХ РЕАКЦИЙ

 

Независимо от того, к какому типу повреждения относится аллергическая реакция, в ее развитии можно выделить три стадии.

I. Стадия иммунных реакций (иммунологическая). Начинается с первого контакта организма с аллергеном и заключается в образовании в организме аллергических антител (или сенсибилизированных лимфоцитов) и их накоплении. В результате организм становится сенсибилизированным, или повышенно чувствительным к специфическому аллергену. При повторном попадании в организм специфического аллергена происходит образование комплексов АГ-АТ (или АГ-сенсибилизированный лимфоцит), которые и обусловливают следующую стадию аллергической реакции.

II. Стадия биохимических реакций (патохимическая). Суть ее состоит в выделении готовых и образовании новых биологически активных веществ (медиаторов аллергии) в результате сложных биохимических процессов, запускаемых комплексами АГ-АТ (или АГ-сенсибилизированный лимфоцит).

III. Стадия клинических проявлений (патофизиологическая). Представляет собой ответную реакцию клеток, органов и тканей организма на образовавшиеся в предыдущей стадии медиаторы.

 

7.5.1. Механизм аллергических реакций, развивающихся по I типу иммунного повреждения

В патогенезе аллергических реакций I типа, которые также называют атопическими (реагиновыми, анафилактическими) выделяют следующие стадии:

I. С т а д и я и м м у н н ы х р е а к ц и й. В норме человеческий организм толерантен к аллергенам окружающей среды. У лиц с наличием определенных молекулярных аномалий иммунной системы (в частности, при наличии очень высокой экспрессии специфических рецепторов (FceRI) на тучных клетках и базофилах крови, что определяется геном на 11-й хромосоме) при избыточном поступлении данных веществ происходит активный иммунный ответ (сенсибилизация) к аллергенам. Этот вариант ответа является Тх2-зависимым, регулируется ИЛ-4, ИЛ-13, другими цитокинами и заканчивается образованием плазматических клеток, синтезирующих IgE и IgG4(cхема 10). В ходе сенсибилизации происходит взаимодействие следующих клеток: дендритных (обеспечивают эндоцитоз аллергена, его процессинг и презентацию в комплексе с HLA II), Т-лимфоцитов-хелперов 2-го типа (вырабатывают цитокины соответствующего профиля, которые нужны для регуляции) и В-лимфоцитов (они сами могут выступать в качестве антигенпредставляющих, но главное - они дифференцируются в плазматические клетки-антителопродуценты и В-клетки памяти) (рис. 40). В-клетки памяти при повторном поступлении в организм причинно-значимого аллергена обеспечивают экспрессный (в течение 10-20 мин) ответ на него, что и будет соответствовать следующим стадиям патологического процесса. Течение сенсибилизации регулируется не только цитокинами профиля Тх2, но и соответствующими костимулирующими молекулами (CTLA-4, CD3OL, CD4OL, OX40 и др.). Второй тип рецепторов IgE - низкоспецифический FceRII (CD23) - экспрессируется на В-лимфоцитах, эозинофилах, макрофагах и тромбоцитах, обеспечивает проявления IgE-опосредованной цитотоксичности по отношению к паразитам, регуляцию синтеза IgE и ряд других функций.

IgЕ значительно отличаются по своим свойствам от других антител (табл.28). Прежде всего, они обладают цитотропностью (цитофильностью). Считается, что присущее им свойство прикрепляться к клеткам и фиксироваться в тканях связано с приобретенными в филогенезе дополнительными 110 аминокислотами на Fс-фрагменте молекулы. Концентрация IgЕ в сыворотке крови потому и низка, что синтезируемые в региональных лимфоузлах молекулы IgЕ в меньшей степени попадают в кровоток, так как в основном фиксируются в окружающих тканях. Разрушение или инактивация этого участка Fс-фрагмента нагреванием (до 560С) приводит к потере цитотропных свойств этих антител, т.е. они термолабильны.

Фиксация антител клетками происходит при помощи рецептора, встроенного в мембрану клеток. Самой высокой способностью связывать IgE-антитела обладают рецепторы для IgЕ, найденные на тучных клетках и базофилах крови, поэтому эти клетки получили название клетки-мишени I порядка. На одном базофиле может фиксироваться от 3000 до 300000 молекул IgЕ. Рецептор для IgЕ обнаружен также на макрофагах, моноцитах, эозинофилах, тромбоцитах и лимфоцитах, однако их связывающая способность ниже. Эти клетки получили название клетки-мишени II порядка (рис. 41).

Связывание IgЕ на клетках - зависимый от времени процесс. Оптимальная сенсибилизация может наступить через 24-48 ч. Фиксированные антитела могут долго находиться на клетках, поэтому аллергическая реакция может быть вызвана спустя неделю и больше. Особенностью IgЕ-антител является также трудность их обнаружения, так как они не участвуют в серологических реакциях.

Итак, первичное попадание аллергена в организм запускает через кооперацию дендритных клеток, Т- и В-лимфоцитов сложные механизмы синтеза IgЕ, фиксирующихся на клетках-мишенях. Повторная встреча организма с этим аллергеном приводит к образованию комплекса АГ-АТ, причем через фиксированные молекулы IgЕ и сам комплекс тоже станет фиксированным на клетках. Если аллерген оказался связанным хотя бы с двумя соседними молекулами IgЕ, то этого достаточно для нарушения структуры мембран клеток-мишеней и их активации. Начинается II стадия аллергической реакции.

II. С т а д и я б и о х и м и ч е с к и х р е- а к ц и й. В этой стадии основную роль играют тучные клетки и базофилы крови, т. е. клетки-мишени I порядка. Тучные клетки (тканевые базофилы) - это клетки соединительной ткани. Они обнаруживаются преимущественно в коже, дыхательных путях, по ходу кровеносных сосудов и нервных волокон. Тучные клетки имеют большие размеры (10-30 мкм в диаметре) и содержат гранулы диаметром 0,2-0,5 мкм, окруженные перигранулярной мембраной. Гранулы тучных клеток и базофилов крови содержат медиаторы: гистамин, гепарин, фактор хемотаксиса эозинофилов аллергии (ФХЭ-А), фактор хемотаксиса нейтрофилов аллергии (ФХН-А) (табл.29).

Образование комплекса АГ-АТ на поверхности тучной клетки (или базофила крови) приводит к стягиванию белков-рецепторов для IgЕ, клетка активируется и секретирует медиаторы. Максимальная активация клетки достигается связыванием нескольких сотен и даже тысяч рецепторов.

В результате присоединения аллергена рецепторы приобретают энзиматическую активность и запускается каскад биохимических реакций. Увеличивается проницаемость клеточной мембраны для ионов кальция. Последние стимулируют эндомембранную проэстеразу, которая переходит в эстеразу и переводит в активную форму фосфолипазу D, гидролизующую мембранные фосфолипиды. Гидролиз фосфолипидов способствует разрыхлению и истончению мембраны, что облегчает слияние цитоплазматической мембраны с перигранулярной и разрыв цитоплазматической мембраны с выходом содержимого гранул (и медиаторов) наружу, происходит экзоцитоз гранул. При этом важную роль играют процессы, связанные с энергетическим обменом, особенно гликолиз. Энергетический запас имеет значение как для синтеза медиаторов, так и для выхода медиаторов через внутриклеточную транспортную систему. По мере развития процесса гранулы перемещаются на клеточную поверхность. Для проявления внутриклеточной подвижности определенное значение имеют микроканальцы и микрофиламенты.

Энергия и ионы кальция необходимы для перехода микроканальцев в функционирующую форму, в то время как повышение уровня циклического аденозинмонофосфата (цАМФ) или снижение циклического гуанозинмонофосфата (цГМФ) дает обратный эффект. Энергия требуется также для освобождения гистамина из рыхлой связи с гепарином. По окончании реакции АГ-АТ клетка остается жизнеспособной.

Кроме выхода медиаторов, уже имеющихся в гранулах тучных клеток и базофилов, в этих клетках происходит быстрый синтез новых медиаторов (табл.29). Источником их являются продукты распада липидов: фактор активации тромбоцитов (ФАТ), простагландины, тромбоксаны и лейкотриены.

Следует отметить, что дегрануляция тучных клеток и базофилов может происходить и под влиянием неиммунологических активаторов, т.е. активирующих клетки не через IgЕ-рецепторы. Это - АКТГ, вещество Р, соматостатин, нейротензин, химотрипсин, АТФ. Таким свойством обладают продукты активации клеток, вторично вовлекаемых в аллергическую реакцию, - катионный белок нейтрофилов, пероксидаза, свободные радикалы и др. Некоторые медикаменты также могут активировать тучные клетки и базофилы, например морфин, кодеин, рент-геноконтрастные вещества.

В результате выделения из тучных клеток и базофилов факторов хемотаксиса нейтрофилов и эозинофилов последние скапливаются вокруг клеток-мишеней I порядка. Нейтрофилы и эозинофилы активируются и тоже высвобождают биологически активные вещества и ферменты. Часть из них являются также медиаторами повреждения (например, ФАТ, лейкотриены и др.), а часть (гистаминаза, арилсульфатаза, фосфолипаза Д и др.) - ферментами, разрушающими определенные медиаторы повреждения. Так, арилсульфатаза из эозинофилов вызывает разрушение лейкотриенов, гистаминаза - разрушение гистамина. Образующиеся простагландины группы Е снижают высвобождение медиаторов из тучных клеток и базофилов.

III. С т а д и я к л и н и ч е с к и х п р о- я в л е н и й. В результате действия медиаторов развивается повышение проницаемости микроциркуляторного русла, что сопровождается выходом жидкости из сосудов с развитием отека и серозного воспаления. При локализации процессов на слизистых оболочках возникает гиперсекреция. В органах дыхания развивается бронхоспазм, который, наряду с отеком стенки бронхиол и гиперсекрецией мокроты, обусловливает резкое затруднение дыхания. Все эти эффекты клинически проявляются в виде приступов бронхиальной астмы, ринита, конъюнктивита, крапивницы (волдырь+гиперемия), кожного зуда, местного отека, диареи и др. В связи с тем, что одним из медиаторов является ФХЭ-А, очень часто I тип аллергии сопровождается увеличением количества эозинофилов в крови, мокроте, серозном экссудате.

В развитии аллергических реакций I типа выделяют раннюю и позднюю стадии. Ранняя стадия появляется в течение первых 10-20 мин в виде характерных волдырей. В ней преобладает влияние первичных медиаторов, выделяемых тучными клетками и базофилами.

Поздняя стадия аллергической реакции наблюдается через 2-6 ч после контакта с аллергеном и в основном связана с действием вторичных медиаторов. Она характеризуется отеком, краснотой, уплотнением кожи, которое формируется в течение 24-48 ч с последующим образованием петехий. Морфологически поздняя стадия характеризуется наличием дегранулированных тучных клеток, периваскулярной инфильтрации эозинофилами, нейтрофилами, лимфоцитами. Окончанию стадии клинических проявлений способствуют следующие обстоятельства:

а) в ходе III стадии удаляется повреждающее начало - аллерген. Активируется цитотоксическое действие макрофагов, стимулируется выделение энзимов, супероксидного радикала и других медиаторов, что очень важно для защиты против гельминтов;

б) благодаря в первую очередь ферментам эозинофилов устраняются повреждающие медиаторы аллергической реакции.

 

7.5.2. Аллергические реакции II типа (цитотоксический тип аллергии)

Цитотоксическим его называют потому, что образующиеся к антигенам клеток антитела соединяются с ними и вызывают их повреждение и даже лизис (цитолитическое действие). В создание учения о цитотоксинах значительный вклад внесли выдающиеся русские ученые И.И. Мечников, Е.С. Лондон, А.А. Богомолец, Г.П. Сахаров. Свою первую работу о так называемых клеточных ядах (цитотоксинах) И. И. Мечников опубликовал еще в 1901 г.

Причиной цитотоксических реакций является возникновение в организме клеток с измененными компонентами цитоплазматической мембраны. Большую роль в процессе приобретения клетками аутоаллергенных свойств играет действие на них различных химических веществ, чаще лекарственных препаратов. Они могут изменять антигенную структуру цитоплазматических мембран за счет конформационных превращений присущих клетке антигенов, появления новых антигенов, образования комплексов аллергенов с белками мембраны, в которых химическое вещество играет роль гаптена (например, 2-метилдофа-гипотензивный препарат). По одному из указанных механизмов может развиться аутоиммунная гемолитическая анемия.

Повреждающее действие на клетку могут оказывать лизосомальные ферменты фагоцитирующих клеток, бактериальные энзимы, вирусы. Поэтому многие паразитарные, бактериальные и вирусные инфекционные заболевания сопровождаются образованием аутоантител к различным клеткам тканей и развитием гемолитической анемии, тромбоцитопении и др.

Патогенез цитотоксических аллергических реакцийвключает следующие стадии:

I. С т а д и я и м м у н н ы х р е а к - ц и й. В ответ на появление аутоаллергенов начинается выработка аутоантител IgG- и IgМ-классов. Они обладают способностью фиксировать комплемент и вызывать его активацию. Часть антител обладают опсонизирующими свойствами (усиливающими фагоцитоз) и обычно не фиксируют комплемент. В ряде случаев после соединения с клеткой происходят конформационные изменения в области Fс-фрагмента антитела, к которому затем могут присоединяться К-клетки (киллеры).

Общее свойство киллерных клеток - наличие у них мембранного рецептора для Fс-фрагмента IgG и способность к цитотоксическому действию (так называемая антителозависимая клеточная цитотоксичность), т.е. они способны к уничтожению только тех измененных клеток, которые покрыты антителами. К таким эффекторным клеткам относят: гранулоциты, макрофаги, тромбоциты, клетки из лимфоидной ткани без характерных маркеров Т- и В-клеток и называемые К-клетками. Механизм лизиса у всех этих клеток одинаков. Антитела (IgG) участвуют в К-клеточном лизисе Fаb- и Fс-фрагментами (рис.42). Считается, что антитела служат «мостиком» между эффекторной клеткой и клеткой- мишенью.

II. С т а д и я б и о х и м и ч е с к и х р е - а к ц и й. На этой стадии появляются медиаторы, иные, чем в реакциях реагинового типа (табл. 30).

1. Основными медиаторами комплемент-опосредованной цитотоксичности являются активированные по классическому пути (через комплекс АГ-АТ) компоненты комплемента: С4в2а3в; С3а; С5а; С567; С5678; С56789, образующие в мембране клетки гидрофильный канал, через который начинают проходить вода и соли.

2. Во время поглощения опсонизированных клеток фагоциты выделяют ряд лизосомальных ферментов, которые могут играть роль медиаторов повреждения (рис.43).

3. В ходе реализации антителозависимой клеточной цитотоксичности принимает участие секретируемый гранулоцитами крови супероксидный анион-радикал.

III. С т а д и я к л и н и ч е с к и х п р о -я в л е н и й. Конечным звеном комплемент- и антителозависимой цитотоксичности служат повреждение и гибель клеток с последующим удалением их путем фагоцитоза. Клетка-мишень является совершенно пассивным партнером в акте лизиса, и ее роль заключается лишь в экспозиции антигена. После контакта с эффекторной клеткой клетка-мишень гибнет, а эффекторная клетка выживает и может взаимодействовать с другими мишенями. Гибель клетки-мишени обусловлена тем, что в поверхности мембран клетки образуются цилиндрические поры диаметром от 5 до 16 нм. С появлением таких трансмембранных каналов возникает осмотический ток (вход в клетку воды) и клетка гибнет.

Цитотоксический тип играет важную роль в иммунном ответе, когда в качестве антигена выступают чужеродные для данного организма клетки, например микробы, простейшие, опухолевые или отработавшие свой срок клетки организма. Однако в условиях, когда нормальные клетки организма под влиянием воздействия приобретают аутоантигенность, этот защитный механизм становится патогенным и реакция из иммунной переходит в аллергическую, приводя к повреждению и разрушению клеток тканей.

Цитотоксический тип реакции может быть одним из проявлений лекарственной аллергии в виде лейкопении, тромбоцитопении, гемолитической анемии и др. Этот же механизм включается и при попадании в организм гомологичных антигенов, например при переливании крови в виде аллергических гемотрансфузионных реакций (на многократное переливание крови), при гемолитической болезни новорожденных.

Действие цитотоксических антител не всегда заканчивается повреждением клеток. При этом имеет большое значение их количество. При малом количестве антител вместо повреждения можно получить феномен стимуляции. Например, с длительным стимулирующим действием естественно образовавшихся аутоантител к щитовидной железе связывают некоторые формы тиреотоксикоза.

 

7.5.3. Аллергические реакции III типа (реакции иммунных комплексов)

Повреждение при этом типе аллергических реакций вызывается иммунными комплексами АГ-АТ. Вследствие постоянного контакта человека с какими-либо антигенами в его организме постоянно происходят иммунные реакции с образованием комплекса АГ-АТ. Эти реакции являются выражением защитной функции иммунитета и не сопровождаются повреждением. Однако при определенных условиях комплекс АГ-АТ может вызывать повреждение и развитие заболевания. Концепция о том, что иммунные комплексы (ИК) могут играть роль в патологии, была высказана еще в 1905 г. К. Пирке и Б. Шиком. С тех пор группа заболеваний, в развитии которых основная роль отводится ИК, получила название болезней иммунных комплексов.

Причиной иммунокомплексных заболеваний являются: лекарственные препараты (пенициллин, сульфаниламиды и др.), антитоксические сыворотки, гомологичные g-глобулины, пищевые продукты (молоко, яичные белки и др.), ингаляционные аллергены (домашняя пыль, грибы и др.), бактериальные и вирусные антигены, антигены мембран, ДНК клеток организма и др. Важно, что антиген имеет растворимую форму.

В патогенезе реакций иммунных комплексовразличаются следующие стадии (рис.44):

I. С т а д и я и м м у н н ы х р е а к ц и й. В ответ на появление аллергена или антигена начинается синтез антител, преимущественно IgG- иIgM-классов. Эти антитела называют также преципитирующими за их способность образовывать преципитат при соединении с соответствующими антигенами.

При соединении АТ с АГ образуются ИК. Они могут образовываться местно, в тканях либо в кровотоке, что в значительной мере определяется путями поступления или местом образования антигенов (аллергенов). Патогенное значение ИК определяется их функциональными свойствами и локализацией вызываемых ими реакций.

От количества и соотношения молекул АГ и АТ зависят величина комплекса и структура решетки. Так, крупнорешетчатые комплексы, образованные в избытке АТ, быстро удаляются из кровотока ретикулоэндотелиальной системой. Преципитированные, нерастворимые ИК, образованные в эквивалентном соотношении, обычно легко удаляются при помощи фагоцитоза и не вызывают повреждения, за исключением случаев их высокой концентрации или образования в мембранах с фильтрующей функцией (в гломерулах, сосудистой оболочке глазного яблока). Небольшие комплексы, образованные в большом избытке антигена, циркулируют длительное время, но обладают слабой повреждающей активностью. Повреждающее действие обычно оказывают комплексы растворимые, образованные в небольшом избытке антигена, м.м. 900-1000 КД. Они плохо фагоцитируются и долго находятся в организме.

Значение вида антител определяется тем, что их разные классы и подклассы обладают различной способностью активировать комплемент и фиксироваться через Fс-рецепторы на фагоцитирующих клетках. Так, IgМ и IgG1-3связывают комплемент, а IgЕ и IgG4- нет.

При образовании патогенных ИК развивается воспаление различной локализации. Ингаляционные антигены способствуют прежде всего реакциям в альвеолярных капиллярах (аллергический альвеолит).

Решающую роль для циркулирующих в крови ИК играют проницаемость сосудов и наличие определенных рецепторов в тканях.

II. С т а д и я б и о х и м и ч е с к и х р е - а к ц и й. Под влиянием ИК и в процессе их удаления образуется ряд медиаторов, основная роль которых заключается в обеспечении условий, способствующих фагоцитозу комплекса и его перевариванию. Однако при определенных условиях процесс образования медиаторов может оказаться чрезмерным, и тогда они начинают оказывать и повреждающее действие.

Основными медиаторами являются:

1. Комплемент, в условиях активации которого различные компоненты и субкомпоненты оказывают цитотоксическое действие. Ведущую роль играет образование С3, С4, С5, которые усиливают определенные звенья воспаления (С3в усиливает иммунную адгезию ИК к фагоцитам, С3а играет роль анафилатоксина, как и С4а, и т.д.).

2. Лизосомальные ферменты, освобождение которых во время фагоцитоза усиливает повреждение базальных мембран, соединительной ткани.

3. Кинины, в частности брадикинин. При повреждающем действии ИК происходит активация фактора Хагемана, в результате из a-глобулинов крови под влиянием калликреина образуется брадикинин.

4. Гистамин, серотонин играют большую роль в аллергических реакциях III типа. Источником их являются тучные клетки, тромбоциты и базофилы крови. Они активируются С3а- и С5а-компонентами комплемента.

5. Супероксидный анион-радикал также принимает участие в развитии реакции этого типа.

Действие всех перечисленных основных медиаторов характеризуется усилением протеолиза.

III. С т а д и я к л и н и ч е с к и х п р о - я в л е н и й. В результате появления медиаторов развиваются воспаление с альтерацией, экссудацией и пролиферацией, васкулиты, приводящие к появлению узловатой эритемы, узелкового периартериита. Могут возникать цитопении (например, гранулоцитопения). Вследствие активации фактора Хагемана и/или тромбоцитов иногда происходит внутрисосудистое свертывание крови.

Третий тип аллергических реакций является ведущим в развитии сывороточной болезни, экзогенных аллергических альвеолитов, некоторых случаев лекарственной и пищевой аллергии, аутоиммунных заболеваний (cистемная красная волчанка и др.). При значительной активации комплемента развивается системная анафилаксия в виде шока.

 

7.5.4. Аллергические реакции IV типа (опосредованные Т-клетками)

Эта форма реактивности сформировалась на поздних этапах эволюции на основе иммунологических реакций и воспаления. Она направлена на распознавание и ограничение действия аллергена. IV тип иммунного повреждения лежит в основе многих аллергических и инфекционных заболеваний, аутоиммунных болезней, отторжения трансплантата, контактного дерматита (контактная аллергия), противоопухолевого иммунитета. Самым ярким ее проявлением служит туберкулиновая реакция, которая в клинической практике используется в виде реакции Манту. Относительно позднее проявление этой реакции (не ранее чем через 6-8 ч в месте введения возникает покраснение, в дальнейшем эритема увеличивается и достигает расцвета через 24-48 ч после введения антигена) позволило также назвать ее гиперчувствительностью замедленного типа (ГЗТ).

Этиология и особенности антигенной стимуляции при ГЗТ. Антигены, индуцирующие ГЗТ, могут иметь различное происхождение: микробы (например, возбудители туберкулеза, бруцеллеза, сальмонеллеза, дифтерии, стрептококки, стафилококки), вирусы коровьей оспы, герпеса, кори, грибы, тканевые белки (например, коллаген), антигенные полимеры аминокислот, низкомолекулярные соединения. По химической природе антигены, которые способны вызвать ГЗТ, относятся чаще к белковым соединениям.

Белки, вызывающие ГЗТ, отличаются низкой молекулярной массой и «слабыми» иммуногенными свойствами. Поэтому они не способны в достаточной мере стимулировать антителообразование. Иммунологическая реакция при ГЗТ обладает рядом отличительных особенностей. Иммунный ответ направлен не только к гаптену, как это имеет место при реакциях немедленного типа, но и к белку-носителю, причем специфичность в отношении антигена при ГЗТ выражена гораздо сильнее, чем при реакциях немедленного типа.

На формирование ГЗТ могут оказать влияние и качество, и количество поступающего в организм антигена. Как правило, для воспроизведения ГЗТ требуется небольшое количество антигена (микрограммы).

В патогенезе аллергической реакции IV типа условно, как и в аллергических реакциях I, II, III типов, можно выделить три стадии (рис. 45).

I. С т а д и я и м м у н н ы х р е а к ц и й. Поступающий в организм антиген чаще всего встречается с макрофагом, обрабатывается им, а затем в переработанном виде передается Тх1, имеющим на своей поверхности рецепторы для антигена. Они распознают антиген, а затем с помощью интерлейкинов запускают пролиферацию эффекторных Т-клеток воспаления с фенотипом CD4+, а также клеток памяти. Последнее немаловажно. Клетки памяти позволяют сформировать быстрый иммунный ответ при повторном попадании антигена в организм.

Осуществляющие ГЗТ лимфоциты захватывают антиген, по-видимому, в непосредственной близости от места его введения. Необходимым условием активации лимфоцитов является одновременное связывание Т-клетки как с антигеном, так и с молекулами главного комплекса гистосовместимости (HLA). В результате одновременного «двойного распознавания» антигена и продуктов HLA начинается пролиферация клеток (трансформация лимфоцитов) и превращение их из зрелых в бласты.

II. С т а д и я б и о х и м и ч е с к и х р е -а к ц и й. Антигенная стимуляция лимфоцитов сопровождается их трансформацией, образованием и дальнейшим выделением медиаторов ГЗТ. Для каждого медиатора на клетках-мишенях обнаружены рецепторы. Действие медиаторов неспецифично (для их действия не нужен антиген). Биологический эффект цитокинов разнообразен (табл.31). Они изменяют клеточную подвижность, активируют клетки, участвующие в воспалении, способствуют пролиферации и созреванию клеток, регулируют кооперацию иммунокомпетентных клеток. Клетками-мишенями для них служат макрофаги и нейтрофилы, лимфоциты, фибробласты, стволовые клетки костного мозга, опухолевые клетки, остеокласты и др. Все цитокины ГЗТ - белки, большинство из которых гликопротеиды.

В зависимости от оказываемого эффекта, цитокины делятся на две большие группы:

1) факторы, подавляющие функциональную активность клеток (МХБ, ФНОb);

2) факторы, усиливающие функциональную активность клеток (фактор переноса; МВБ; митогенный и хемотаксические факторы).

III. С т а д и я к л и н и ч е с к и х п р о - я в л е н и й. Зависит от природы этиологического фактора и той ткани, где «разыгрывается» патологический процесс. Это могут быть процессы, протекающие в коже, суставах, внутренних органах. В воспалительном инфильтрате преобладают мононуклеарные клетки (лимфоциты, моноциты и макрофаги). Нарушение микроциркуляции в очаге повреждения объясняется повышением проницаемости сосудов под влиянием медиаторов белковой природы (кинины, гидролитические ферменты), а также активацией свертывающей системы крови и усилением образования фибрина. Отсутствие значительного отека, так характерного для иммунных поражений при аллергических реакциях немедленного типа, связано с весьма ограниченной ролью гистамина в ГЗТ.

При ГЗТ повреждение может развиваться в результате:

1) прямого цитотоксического действия CD4+Т-лимфоцитов на клетки-мишени (ФНОbи комплемент не принимают участия в этом процессе);

2) цитотоксического действия ФНОb(так как действие последнего неспецифично, то повреждаться могут не только те клетки, которые вызвали его образование, но и интактные клетки в зоне его образования);

3) выделения в процессе фагоцитоза лизосомальных ферментов, повреждающих тканевые структуры (эти ферменты выделяют в первую очередь макрофаги).

Составной частью ГЗТ является воспаление, которое присоединяется к иммунной реакции действием медиаторов патохимической стадии. Как и при иммунокомплексном типе аллергических реакций, оно подключается в качестве защитного механизма, способствующего фиксации, разрушению и элиминации аллергена. Однако воспаление является одновременно фактором повреждения и нарушения функции тех органов, где оно развивается, и ему отводится важнейшая патогенетическая роль в развитии инфекционно-аллергических, аутоиммунных и некоторых других заболеваний.

 

7.6. ПСЕВДОАЛЛЕРГИЧЕСКИЕ РЕАКЦИИ

В аллергологической практике врачу-аллергологу все чаще приходится иметь дело с большой группой реакций, клинически часто неот-личимых от аллергических. Эти реакции имеют аналогичные с аллергическими патохимическую и патофизиологическую стадии и получили название псевдоаллергические (неиммунологические). Выявить участие иммунных реакций в механизмах их возникновения и развития не удается.

В развитии псевдоаллергических реакций особую роль играют такие медиаторы, как гистамин, лейкотриены, продукты активации комплемента, калликреин-кининовой системы.

Выделяют три группы псевдоаллергических реакций:

1. Реакции, связанные с избыточным освобождением медиаторов (гистамина) и тучных клеток или с нарушением их инактивации.

Причины: высокая температура, УФО, ионизирующая радиация, антибиотики, полисахариды.

2. Реакции, связанные с дефицитом ингибитора первого компонента комплемента, а также неиммунологической активацией комплемента по альтернативному пути.

Причины: яд кобры, бактериальные липополисахариды, ферменты: трипсин, плазмин, калликреин, активирующиеся при повреждении.

3. Реакции, связанные с нарушением метаболизма полиненасыщенных жирных кислот (в первую очередь арахидоновой).

Причины: ацетилсалициловая кислота, производные пиразолона, нестероидные противовоспалительные препараты.

Основные проявления псевдоаллергических реакций: крапивница, отек Квинке, бронхоспазм, анафилактический шок.

 

Часть II

ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ

 

Глава 8

ПАТОФИЗИОЛОГИЯ ПЕРИФЕРИЧЕСКОГО (ОРГАННОГО)

КРОВООБРАЩЕНИЯ И МИКРОЦ



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 845; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.172.68 (0.077 с.)