Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Деформация и разрушение металлов

Поиск

 

Деформация – изменение формы и размеров тела под действием внешних воздействий.

Механическое напряжение – мера внутренних сил, возникающих в деформируемом теле и действующих на единицу площади поперечного сечения под влиянием внешних воздействий. Единица напряжения в системе СИ – паскаль (Па): 1Па = 1 Н/м2, 1 кгс/мм2 =10 МПа.

Напряжения и вызываемые ими деформации возникают при действии на тело внешних сил в результате фазовых и структурных превращений, связанных с изменением объема.

При упругой деформации (рис. 1.16,а) происходят небольшие смещения атомов из положения равновесия. Баланс кулоновских сил притяжения и отталкивания, которыми были связаны атомы, нарушается. При снятии нагрузкисмещенные атомы под действием кулоновских сил возвращаются в исходное положение, деформация исчезает. С ростом нагрузки начинается пластическая деформация, которая остается после снятия нагрузки. Пластическая деформация в кристаллах осуществляется скольжением и двойникованием (рис. 1.16,б,в). Скольжение (смещение) отдельных частей кристалла относительно друг друга происходит под действием напряжений больше критической величины. При двойниковании сдвиг происходит в ограниченном объеме на определенную величину, одна часть кристалла становится в положение, симметричное относительно другой.

Скольжение осуществляется в результате перемещения дислокаций по плоскостям и направлениям с наиболее плотной упаковкой атомов (рис. 1.17) и зависит от кристаллической структуры металла, скорости приложения нагрузки, температуры. При приложении касательного напряжения (t) краевая дислокация перемещается вследствие разрыва старых межатомных связей и установления новых (рис. 1.17,б, в). Затем разрываются новые межатомные связи и т. д. Дислокация выходит на край кристалла (рис. 1.17,д). За счет элементарного акта пластической деформации происходит сдвиг на величину межатомного расстояния. Дислокации не обрываются внутри кристалла, а прерываются на других дислокациях или на границах зерен.

Направления скольжения совпадают с направлениями наиболее плотного расположения атомов. Плоскости и направления скольжения в этой плоскости (рис. 1.18) образуют систему скольжения. Число систем скольжения в металлах с различным типом решетки неодинаково.

В металлах с ГЦК решеткой (Feg, Сu, Al, Ni, Ag) четыре плоскости скольжения (111) с тремя направлениями скольжения вдоль диагоналей граней [110] в каждой плоскости образуют 12 систем скольжения.

В металлах с ОЦК решеткой (Fea, W) плоскости скольжения (110), (112), (123) и направления скольжения вдоль пространственных диагоналей [111] образуют 48 систем скольжения. При пластической деформации металлы с ГЦК решеткой упрочняются сильнее, чем с ОЦК.

В металлах с ГПУ решеткой при c/a ³ 1,63 (Mg, Zn) скольжение происходит по плоскости базиса (рис. 1.18,в) и трем направлениям скольжения. Эти металлы менее пластичны и труднее, чем металлы с кубической решеткой, поддаются прокатке, штамповке.

В металлах с ГПУ решеткой при c/a £ 1,63 (Zr, Ti) скольжение происходит по плоскостям базиса, пирамидальным и призматическим плоскостям. Эти металлы более пластичные, чем магний и цинк.

Источник Франка-Рида. Дислокация расположена в плоскости скольжения (плоскости рисунка) и закреплена в точках А и А 1другими дислокациями или примесными атомами (рис. 1.19). Под действием сдвигающего напряжения t дислокация выгибается и принимает форму полусферы. Далее распространение дислокации происходит самопроизвольно путем образования двух спиралей. В точке С спирали встречаются.Это приводит к образованию внешней замкнутой петли дислокации и новой дислокации, занимающей исходную позицию А и А 1. Внешняя петля разрастается до поверхности кристалла (зерна), что приводит к элементарному сдвигу, новая дислокация начинает снова выгибаться. Из одного источника образуются сотни дислокаций.

При деформировании монокристалла дислокации перемещаются беспрепятственно на большие расстояния, если плоскость скольжения параллельна направлению напряжения. Монокристалл не упрочняется, пластическая деформация велика. Эта стадия легкого скольжения в кристаллах с ГПУ решеткой достигает 1000 %, с ГЦК и ОЦК – 10-15 %. С ростом деформации возникает множественное скольжение – дислокации перемещаются в пересекающихся плоскостях. Плотность дислокаций растет до 102 -104 см-2, сопротивление деформации увеличивается.

При деформировании поликристалла стадия легкого скольжения отсутствует. Достигнув границы зерна, дислокации останавливаются. Напряжения при скоплении дислокаций упруго распространяются через границу и приводят в действие источник Франка-Рида в соседнем зерне. Плоскости и направления скольжения в каждом зерне различны. Зерна деформируются неодинаково, так как ориентированы произвольно по отношению к приложенной нагрузке(рис. 1.20).

С ростом нагрузки деформация зерен сопровождается изгибами и поворотами плоскостей скольжения. Зерна вытягиваются в направлении пластического течения. Концентрация дефектов (дислокаций, вакансий, междоузельных атомов) внутри зерен возрастает. Эти дефекты затрудняют движение дислокаций: сопротивление деформации растет, пластичность – уменьшается. Явление упрочнения металла при пластической деформации называют наклепом. При степенях деформации более 40 % появляется кристаллографическая ориентация зерен – текстура деформации (рис. 1.20,г). Внутри зерен дислокации сначала распределены равномерно. С ростом деформации появляется ячеистая структура. Ячейки с размером 0,2-3 мкм свободны от дислокаций; границы ячеек – сложно переплетенные стенки дислокаций.

Деформирование двухфазного сплава. Каждая фаза имеет свои плоскости скольжения и критические напряжения сдвига. Процесс деформирования зависит от количества и структуры второй фазы, характера ее распределения. Если хрупкая вторая фаза располагается в виде сетки по границам зерен пластичной матрицы, то сплав будет хрупким. Если хрупкая фаза присутствует в виде отдельных зерен, то сплав сохранит пластичность.

Когда дислокация наталкивается на когерентные частицы второй фазы, то она либо их перерезает, либо огибает (рис. 1.21,а), в зависимости от их размеров, прочности и расстояния между ними. Когда дислокация наталкивается на некогерентные частицы, то она их только огибает. На рис. 1.21,б показано сначала выгибание, а при больших напряжениях – огибание частиц дислокациями. Оставив вокруг частицы петлю, дислокация скользит в прежнем направлении. При возрастании напряжений число петель вокруг каждой частицы увеличивается, расстояние между ними уменьшается. Напряжение для движения дислокации между частицами возрастает, прочность металла увеличивается.

Разрушение металлов. Процесс деформации при достаточно высоких напряжениях заканчивается зарождением трещины и ее распространением через все сечение образца – разрушением. Если металл претерпевает перед разрушением упругую и значительную пластическую деформацию (более 30 %), то говорят о вязком разрушении. При отсутствии или незначительном развитии пластической деформации происходит хрупкое разрушение. Для хрупкого разрушения характерна острая, ветвящаяся трещина, для вязкого наоборот – тупая, раскрывающаяся трещина. Абсолютно вязкое разрушение характерно для такого материала, как сырая глина; абсолютно хрупкое разрушение свойственно алмазу. Большинству технических материалов присуще и вязкое, и хрупкое разрушение, разделение проводится условно по преобладанию того или иного вида. Механизм зарождения трещины при хрупком и вязком разрушении одинаков. Возникновение зародыша трещины происходит при скоплении дислокаций перед препятствием (границы зерен, межфазовые границы, включения), что приводит к возникновению концентратора напряжений, достаточных для образования микротрещины (рис. 1.22).

Влияние нагрева на структуру деформированного металла. До пластической деформации металл находится в равновесном состоянии 1 (рис. 1.23) с минимальным запасом свободной энергии. Большая часть работы (до 95 %), затрачиваемой на деформацию металла, превращается в теплоту – металл нагревается. Система переходит в неравновесное состояние 2. Часть энергии (5-10 %), затрачиваемой при деформации на образование большого числа дефектов кристаллического строения, накапливается в металле. Плотность дислокаций в зависимости от степени деформации увеличивается от 106-108 до 1010-1012 см-2. Система переходит в метастабильное состояние 3, устойчивое при комнатной температуре. При нагреве преодолеваются барьеры DЕ для диффузии точечных дефектов и движения дислокаций. Система возвращается в равновесное состояние 1.

Процессы, происходящие при нагреве, подразделяют на возврат и рекристаллизацию, которые сопровождаются уменьшением свободной энергии. Возврат происходит при низких температурах, рекристаллизация – при более высоких.

Возврат. Форма зерен при возврате не изменяется. При низких температурах нагрева протекает первая стадия возвратаотдых. Уменьшается концентрация собственных точечных дефектов (сток к границам и взаимоуничтожение). Дислокации одинаковых знаков отталкиваются друг от друга, противоположных – притягиваются и аннигилируют (рис. 1.24), т. е. восстанавливаются атомные плоскости. Остаются хаотично расположенные дислокации преимущественно одного знака. Отдых металла снимает внутренние напряжения, уменьшает на 10-15 % твердость и прочность.

При более высоких температурах нагрева протекает вторая стадия возвратаполигонизация. В зернах образуются новые малоугловые границы в результате скольжения и переползания дислокаций. Зерно делится на субзерна – полигоны, свободные от дислокаций. Дислокации скапливаются на границах полигонов, образуя стенки (рис. 1.25). Полигонизация наблюдается не у всех металлов: редко развивается в меди и ее сплавах, хорошо выражена в сплавах алюминия и железа. При деформировании сплавов сложного состава полигонизация приводит к возникновению стабильной ячеистой структуры. Дислокации скапливаются на границах ячеек и вступают во взаимодействие с атомами и дисперсными частицами второй фазы. Ячеистая структура сохраняется при значительном нагреве. Сплавы не рекристаллизуются. При нагреве деформированных металлов процесс отдыха происходит всегда, полигонизация – при определенных условиях.

Первичная рекристаллизация – образование зародышей новых зерен и последующий рост. Зародыши возникают на участках с повышенной плотностью дислокаций, где сосредоточены наибольшие искажения решетки – у границ деформированных зерен, блоков (рис. 1.26). Чем больше степень пластической деформации, тем больше возникает зародышей. Зародыши растут путем диффузии к ним атомов от деформированных участков. Для начала рекристаллизации необходимы следующие условия.

1. Критическая степень деформации металла (например, для алюминия – 2 %, для железа и меди – 5 %). При меньшей степени деформации зарождения новых зерен при нагреве не происходит.

2. Температурный порог рекристаллизации – наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен:

.

Коэффициент a зависит от чистоты металла и степени деформации. Металл после холодной деформации со степенью e = 80 % рекристаллизуется при более низкой температуре, чем после деформирования со степенью e = 20 %. Для металлов технической чистоты a = 0,3-0,4, твердых растворов a= 0,5-0,6. Для алюминия, меди и железа технической чистоты Т рек равна соответственно: 100, 270 и 450 °С.

Первичная рекристаллизация полностью снимает наклеп. После ее завершения происходит рост образовавшихся зерен – собирательная рекристаллизация. При высоких температурах зерна самопроизвольно укрупняются за счет слияния и объединения границ. Свободная энергия металла уменьшается вследствие уменьшения поверхностной энергии (чем крупнее кристаллы, тем меньше протяженность границ). Заключительный этап – вторичная рекристаллизация, сопровождается неравномерным ростом отдельных зерен по сравнению с другими. Формируются зерна-гиганты и зерна-карлики.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 1342; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.24.192 (0.007 с.)