Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие о напряжениях, деформациях и перемещениях.

Поиск

Рабочие гипотезы СОПРОМАТА

ОТВЕТ: В отличие от термеха, базирующегося на модели абс. твердого тела, в сопромате принята своя расчетная модель-модель идеализированного деформируемого тела. А для упрощения расчетов принимаются следующие допущения или гипотезы: 1) Материал тела имеет сплошное строение. 2) материал однороден, т.е. во всех точках свойства одинаковы. 3) материал изотропен, т.е. по всем направлениям свойства одинаковы. 4) до приложения внешних сил начальные напряжения в материале отсутствуют. 5) при решении реальных задач целесообразно использовать принцип суперпозиции, или принцип независимости действия сил, т.е. воздействие на конструкцию группы сил равно сумме воздействий от каждой силы в отдельности и не зависит от последовательности приложения этих сил.

ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ И МЕТОД ИХ ОПРЕДЕЛЕНИЯ.

ОТВЕТ: Под действием внешних сил на брус возникают внутренние силы или внутренние силовые факторы, для определения которых в сопромате принят единый расчетный метод – метод сечений. 1) разрезаем мысленно брус в исследуемом сечении на 2 части I и II. 2) Отбрасываем одну из частей. 3) Заменяем действие отбрасываемой части II на часть I внутренними силовыми факторами(в общем случае их 6). Qx Qy – поперечные силы, Nz – продольная сила, Mx My – изгибающие моменты, Mz – крутящий момент. 4) Уравновешиваем оставшуюся часть бруса и с помощью уравнений равновесия термеха находим искомые силовые факторы.

 

ПОНЯТИЕ О НАПРЯЖЕНИЯХ, ДЕФОРМАЦИЯХ И ПЕРЕМЕЩЕНИЯХ.

ОТВЕТ: Мерой интенсивности действия внутренних сил в окрестности точки рассматриваемого поперечного сечения являются напряжения, определяемые отношением силы к единице площади [Па]. Если в поп. сечении выделить элемент DА, к которому будет приложена сила DР, то DР/DА=рm – среднее полное напряжение в рассматриваемой точке поперечного сечения. - полное истинное напряжение. Вектор раскладывают на и . - нормальное напряжение – вызывает разрушения путем отрыва. - касательное напряжение – вызывает разрушение путем сдвига. Перемещения и деформации – понятия, характеризующие изменение размеров и формы исследуемого тела. При этом перемещения являются следствием деформации.

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТУПЕНЧАТЫХ БРУСЬЯХ С НЕСКОЛЬКИМИ СИЛОВЫМИ УЧАСТКАМИ.

ОТВЕТ: Растяжением или сжатием бруса называют такой его вид деформации, при котором все внешние силы направлены по продольной оси, а в поперечных сечениях возникает единственный внутренний силовой фактор – продольная сила N. Ее величину определяют, используя метод сечений: , т.е. продольная сила в рассматриваемом сечении бруса численно равна алгебраической сумме всех внешних сил, расположенных по одну сторону от сечения. Условились считать N>0, если она направлена в сторону от сечения, т.е. растягивает и N<0, если сжимает. Для полного суждения о прочности бруса необходимо построить график изменения продольной силы по длине бруса – эпюру продольной силы (Эп.N).

Напряжения и деформации при осевом растяжении-сжатии

В процессе деформирования в поперечных сечениях бруса при осевом растяжении-сжатии возникают только нормальные напряжения σ, причем они распределяются равномерно по поперечному сечению.

При растяжении-сжатии брус испытывает только линейные деформации.

– абсолютная продольная деформация груза (удлинение)

- относительная продольная деформация

- абсолютная поперечная деформация (сужение)

- относительная поперечная деформация

Связь между и : - коэффициент Пуассона.

Линейная закономерность, связывающая напряжения и деформации – закон Гука при осевом растяжении-сжатии.

Определение геом. характеристик.

Рассмотрим определение геом. характеристик , для наиболее часто встречаемых поперечных сечений валов.

1.Сплошной вал

 

2.Полый вал

 

 

3.Тонкостенное трубчатое сечение

 

К тонкостенным отн-ся трубу с соотношением

Определение перемещений при изгибе. Условие жесткости. Дифференциальное уравнение изогнутой оси балки.

 

 

 

 

 

 

 

 

Варианты расчета простых статически неопределимых балок

Существует несколько способов расчета простых балок:

1.Сравнение линейных перемещений.

ΔВ=ΔВq+ΔBRB=0(1) доп. уравнение деформаций

 

Слагаемые в(1) могут быть найдены исп-я готовые таблицы или универсальные уравнения. Применительно к рас-му предмету:

ΔBq=-qe4/8EIx; ΔBRB=RBe3 /3EIx;

 

ΔB=-qe4/8EIx +RBe3/3EIx =0 =>RB=3qe/8

 

2. Сравнение угловых перемещений.

Можно отбросить связь, препятствующая повороту опорного сечения А и записать

 

ΔA=ΔAq+ΔAMA=0(2)

Также ур-е деформации слагаемое означает углы поворота.

 

3.Составление замкнутой системы ур-я.

3 ур-я статики+ унивес. ур-е

yB=0.

43. Метод сил для расчета сложных СНС.

Метод при котором за неизвестное принимаются сосредоточенные моменты наз-ся методом сил. Он явл-ся наиболее распространенным и ис-ся для любых упругих систем (балки, рамы,эстакады итд.).

Например:

К трем ур-ям статики для решения данной СНС добавится 3 уравнения, выражающие рав-во 0 перемещений по направлениям всех отброшенных связей т.е. опорное сечение и не перемещаются им в горизонтальном или в вертикальном перемещениях и не переворачиваются.

X1 Δ1=0

X2 Δ2=0 (1)

X3 Δ3=0

Каждое уравнение системы(1) можно записать в развернутом виде:

Δ1=Δ11+Δ12+Δ13+Δ1f=0 (2)

Первый символ указывает направление; 2-й воз-е.

Δ1f-перемещение опорного сечения А в направлении действия X, вызванное внешней нагрузкой

(2) можно выразить через единичные перемещения и искомое неизвестное (это первые три слагаемых)

Δ11=δ11-x1 и тогда система примет закончен. вид.

δ11 x1+ δ12 x2+ δ13 x3+ Δ1f=0

δ21 x1+ δ22 x2+ δ23 x3+ Δ2f=0 (3)-система кумс.

δ31 x1+ δ32 x2+ δ33 x3+ Δ3f=0

Канонические ур-я метода сил-КУМС.

Число ур-й равно степени статической неопределимости.

 

Рабочие гипотезы СОПРОМАТА

ОТВЕТ: В отличие от термеха, базирующегося на модели абс. твердого тела, в сопромате принята своя расчетная модель-модель идеализированного деформируемого тела. А для упрощения расчетов принимаются следующие допущения или гипотезы: 1) Материал тела имеет сплошное строение. 2) материал однороден, т.е. во всех точках свойства одинаковы. 3) материал изотропен, т.е. по всем направлениям свойства одинаковы. 4) до приложения внешних сил начальные напряжения в материале отсутствуют. 5) при решении реальных задач целесообразно использовать принцип суперпозиции, или принцип независимости действия сил, т.е. воздействие на конструкцию группы сил равно сумме воздействий от каждой силы в отдельности и не зависит от последовательности приложения этих сил.

ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ И МЕТОД ИХ ОПРЕДЕЛЕНИЯ.

ОТВЕТ: Под действием внешних сил на брус возникают внутренние силы или внутренние силовые факторы, для определения которых в сопромате принят единый расчетный метод – метод сечений. 1) разрезаем мысленно брус в исследуемом сечении на 2 части I и II. 2) Отбрасываем одну из частей. 3) Заменяем действие отбрасываемой части II на часть I внутренними силовыми факторами(в общем случае их 6). Qx Qy – поперечные силы, Nz – продольная сила, Mx My – изгибающие моменты, Mz – крутящий момент. 4) Уравновешиваем оставшуюся часть бруса и с помощью уравнений равновесия термеха находим искомые силовые факторы.

 

ПОНЯТИЕ О НАПРЯЖЕНИЯХ, ДЕФОРМАЦИЯХ И ПЕРЕМЕЩЕНИЯХ.

ОТВЕТ: Мерой интенсивности действия внутренних сил в окрестности точки рассматриваемого поперечного сечения являются напряжения, определяемые отношением силы к единице площади [Па]. Если в поп. сечении выделить элемент DА, к которому будет приложена сила DР, то DР/DА=рm – среднее полное напряжение в рассматриваемой точке поперечного сечения. - полное истинное напряжение. Вектор раскладывают на и . - нормальное напряжение – вызывает разрушения путем отрыва. - касательное напряжение – вызывает разрушение путем сдвига. Перемещения и деформации – понятия, характеризующие изменение размеров и формы исследуемого тела. При этом перемещения являются следствием деформации.



Поделиться:


Последнее изменение этой страницы: 2016-06-28; просмотров: 1763; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.246.168 (0.009 с.)