![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Выплавка стали в основных дуговых электропечахСодержание книги
Поиск на нашем сайте
1. Шихтовые материалы электроплавки Основной составляющей шихты (75-100 %) электроплавки является стальной лом. Лом не должен содержать цветных металлов и должен иметь минимальное количество никеля и меди; желательно, чтобы содержание фосфора в ломе не превышало 0,05 %. При более высоком содержании фосфора продолжительность плавки возрастает. Лом не должен быть сильно окисленным (ржавым). Ржавчина — гидрат оксида железа, с ней вносится в металл много водорода. Лом должен быть тяжеловесным, чтобы обеспечивалась загрузка шихты в один прием (одной корзиной). При легковесном ломе после частичного расплавления первой порции шихты приходится вновь открывать печь и подсаживать шихту, что увеличивает продолжительность плавки. В последние годы расширяется применение металлизован-ных окатышей и губчатого железа — продуктов прямого вос-
Отличительная особенность этого сырья — наличие углерода от 0,2-0,5 до 2 % и очень низкое содержание серы, фосфора, никеля, меди и других примесей, обычно имеющихся в стальном ломе. Это позволяет выплавлять сталь, отличающуюся повышенной чистотой от примесей. Переплав отходов легированных сталей позволяет экономить дорогие ферросплавы. Поэтому эти отходы собирают и хранят рассортированными по химическому составу в отдельных закромах. Их используют при выплавке сталей, содержащих те же легирующие элементы, что и отходы. Для повышения содержания углерода в шихте используют чугун, кокс и электродный бой. Основное требование к чугуну — минимальное содержание фосфора; с тем, чтобы не вносить много фосфора в шихту малых (< 40 т) печей вводят не более 10 % чугуна, а в большегрузных не более 25 %. В качестве шлакообразующих в основных печах применяют известь, известняк, плавиковый шпат, боксит, шамотный бой; в кислых печах — кварцевый песок, шамотный бой, известь. В качестве окислителей используют железную руду, прокатную окалину, агломерат, железорудные окатыши, газообразный кислород. К шлакообразующим и окислителям предъявляются те же требования, что и при других сталеплавильных процессах. В частности, известь должна содержать более 90 % СаО, менее 2 % Si02, менее 0,1 % S и быть свежеобожженной, чтобы не вносить в металл водород. Железная руда должна содержать менее 8% Si02, поскольку он понижает основность шлака, менее 0,05 % S и менее 0,2 % Р; желательно применять руду с размером кусков 40—100 мм, поскольку такие куски легко проходят через слой шлака и непосредственно реагируют с металлом.
В плавиковом шпате, применяемом для разжижения шлака, содержание CaF2 должно превышать 85 %. В электросталеплавильном производстве для легирования и раскисления применяются практически все известные ферросплавы и легирующие. 2. Традиционная технология с восстановительным периодом Технология плавки с окислительным и восстановительным периодами или традиционная технология применяется в течение десятилетий на печах вместимостью =s 40 т для выплавки высококачественных легированных сталей. Эту технологию называют также двухшлаковой, а процесс плавки — двухшла-ковым, поскольку по ходу плавки вначале (периоды плавления и окислительный) в печи наводят окислительный шлак, то есть содержащий много оксидов железа, а затем его сливают и в восстановительном периоде наводят новый (второй) шлак, не содержащий оксидов железа. До недавнего времени (до широкого внедрения процессов внепечной обработки) плавка в электродуговых печах по этой технологии была единственным способом получения легированных высококачественных сталей и такие стали назывались сталями "электропечного сортамента". Высокое качество металла обеспечивалось за счет того, что в окислительном периоде создавались условия для удаления до очень низких содержа- Рис. 136. Технологические операции электроплавки: а — заправка; б — загрузка шихты; в — плавление; г — скачивание шлака; д — печь после расплавления шихты; е — выпуск стали; / — заправочная машина; 2 — загрузочная корзина; 3 — стальной лом; 4 — гребок для скачивания шлака; 5 — шлаковый ковш (чаша); 6 — сталеразливочный ковш
Плавка состоит из периодов: 1) заправка печи; 2) загрузка шихты; 3) плавление; 4) окислительный период; 5) восстановительный период; 6) выпуск стали. На рис. 136 показан ряд выполняемых в процессе плавки операций. Заправка заключается в том, что после выпуска плавки на поврежденные участки набивки пода или на всю ее поверхность забрасывают магнезитовый порошок (иногда порошок с добавкой пека или смолы), что позволяет поддерживать постоянной толщину изнашивающегося слоя набивки. Заправку ведут вручную и с помощью различных заправочных машин. Одна из них состоит из бункера, под которым имеется горизонтально расположенный вращающийся диск; машину опускают (см. рис. 136, а) сверху в открытую печь и высыпающийся из бункера порошок разбрасывается диском по окружности. Длительность заправки 10—20 мин. Загрузка шихты. При выплавке стали в малых и средних печах шихта на 90—100 % состоит из стального лома. Для повышения содержания углерода в шихту вводят чугун (< 10 %), а также электродный бой или кокс. Общее их количество должно быть таким, чтобы содержание углерода в шихте превышало нижний предел его содержания в готовой стали на 0,3 % при выплавке высокоуглеродистых сталей, на 0,3—0,4 % при выплавке среднеуглеродистых и на 0,5 % для низкоуглеродистых. Этот предел несколько снижается при росте емкости печи. Чтобы совместить удаление части фосфора с плавлением шихты в завалку рекомендуется давать 2—3 % извести. Загрузку шихты ведут с помощью корзины (бадьи). Ее вводят (см. рис. 136, б) в открытую печь сверху и, раскрывая дно, высыпают шихту на подину печи. Загрузку всей шихты производят одной, а иногда двумя корзинами. Длительность загрузки одной корзины равна ~ 5 мин. В корзины шихту укладывают в следующей последовательности: на дно кладут часть мелочи, чтобы защитить подину от ударов тяжелых кусков лома, затем в центре укладывают крупный лом, а по периферии средний и сверху - оставшийся мелкий лом. Для уменьшения угара кокс и электродный бой кладут под слой крупного лома. Плавление. После окончания завалки электроды опускают почти до касания с шихтой и включают ток. Под действием высокой температуры дуг шихта под электродами плавится, жидкий металл стекает вниз, накапливаясь в центральной части подины. Электроды постепенно опускаются, проплавляя в шихте "колодцы" (рис. 136, в и рис. 137, б) и достигая крайнего нижнего положения. В дальнейшем по мере увеличения количества жидкого металла электроды поднимаются, так как автоматические регуляторы поддерживают длину дуги постоянной. Плавление ведут при максимальной мощности трансформатора. На печах вместимостью 25 т и более для ускорения плавления осуществляют вращение ванны. Когда электроды проплавят в шихте три "колодца", свод и электроды приподнимают, печь поворачивают сначала в одну сторону на 40°, проплавляют колодцы в новых местах, а затем поворачивают печь в другую сторону на 80°. Таким образом проплавляют девять колодцев. В период плавления необходимо обеспечить раннее образование шлака, предохраняющего металл от насыщения газами и науглероживания электродами. С этой целью, если в завалку не давали известь, в проплавляемые электродами колодцы несколькими порциями присаживают известь (1—3 % от массы металла).
Во время плавления происходит окисление составляющих шихты, формируется шлак, происходит частичное удаление в шлак фосфора и серы. Окисление идет за счет кислорода воздуха, окалины и ржавчины, внесенных металлической шихтой. За время плавления полностью окисляется кремний, 40—60 % марганца, частично окисляется углерод и железо. В
Рис. 137. Характер плавления шихты в высокомощной печи (а) и в печи с невысокомощным трансформатором 00 29-3810
Для ускорения плавления иногда применяют газокислородные горелки, вводимые в рабочее пространство через свод или стенки печи. За счет тепла, выделяющегося от сжигания газа, сокращается длительность плавления и расход электроэнергии (на 10-15%). С этой же целью часто применяют продувку кислородом, вводимым в жидкий металл после расплавления 3/4 шихты с помощью фурм или стальных футерованных трубок, Окисление железа, а также марганца, кремния и других примесей металла газообразным кислородом протекает с выделением значительного количества тепла, которое ускоряет расплавление лома. При расходе кислорода 4—6 м3/т длительность плавления сокращается на 10—20 мин. Продолжительность периода плавления определяется в первую очередь мощностью трансформатора и составляет от 1,2 до 3,0 ч. Расход электроэнергии за время плавления составляет 430—480 кВт • ч/т. Окислительный период. Задачи окислительного периода плавки: а) уменьшить содержание в металле фосфора до 0,01—0,015 %; б) уменьшить содержание в металле водорода и азота; в) нагреть металл до температуры, близкой к температуре выпуска (на 120-130 °С выше температуры ликвидуса); г) окислить углерод до нижнего предела его требуемого содержания в выплавляемой стали. Особо важную роль в этом периоде играет процесс окисления углерода, поскольку с образующимися при этом пузырями СО удаляются растворенные в металле водород и азот, и пузыри вызывают перемешивание ванны, ускоряющее нагрев металла и удаление в шлак фосфора. Окисление примесей ведут, используя либо железную руду (окалину), либо газообразный кислород. Окислительный период начинается с того, что из печи сливают 65—75 % шлака, образовавшегося в период плавления. Шлак сливают не выключая ток, наклонив печь в сторону рабочего окна на 10-12° (см. рис. 136, г). Слив шлака
производят для того, чтобы удалить из печи перешедший в шлак фосфор. Удалив шлак, в печь присаживают шлакообра-«ующие: 1—1,5 % извести и при необходимости 0,15—0,25 % плавикового шпата, шамотного боя или боксита. После сформирования жидкоподвижного шлака в ванну в течение всего окислительного периода вводят порциями железную руду с известью либо ведут продувку кислородом; печь для слива шлака в течение периода наклонена в сторону рабочего окна. Присадка руды или продувка кислородом вызывает интенсивное окисление углерода с выделением пузырей СО, вспенивающими шлак, в результате чего он стекает из печи через порог рабочего окна. Общий расход руды составляет 3-6,5 % от массы металла. С тем, чтобы предотвратить сильное охлаждение металла, единовременная порция руды не должна быть более 0,5—1 %. Газообразный кислород вводят в металл по футерованным железным трубкам через рабочее окно или с помощью водо-охлаждаемой фурмы через отверстие в своде печи. При этом трубки должны быть погружены в металл на глубину 150-200 мм. Скорость обезуглероживания газообразным кислородом в 3-5 раз больше, чем железной рудой, что дает возможность сократить продолжительность окислительного периода на 20-30 мин. Общая длительность продувки ванны составляет 10-20 мин, расход кислорода 3-15 м3/стали. Наряду с углеродом окисляется марганец; всего за время плавления и окислительного периода окисляется 60—70% Мп, содержащегося в шихте. В течение всего окислительного периода идет дефосфора-ция металла по реакции: 2[P]+5(FeO)+3(CaO) = (ЗСаО • P2Os)+5Fe+767290 Дж/моль. Для успешного протекания реакции необходимы высокие основность шлака и концентрация оксидов железа в нем, а также пониженная температура. Эти условия создаются при совместном введении в печь извести и руды. Полнота дефосфорации повышается в результате перемешивания шлака и металла при кипении и вследствие непрерывного обновления шлака (слив шлака и периодические добавки новых порций шлакообразую-ших). Коэффициент распределения фосфора между шлаком и металлом (P2Os)/[P] изменяется в пределах 50—100, обычно возрастая при росте основности и окисленности шлака.
При кипении вместе с пузырьками СО из металла удаляются водород и азот. Этот процесс имеет большое значение для повышения качества электростали, поскольку в электропечи в зоне электрических дуг идет интенсивное насыщение металла азотом и водородом. Это насыщение ускоряется в результате диссоциации молекул азота и водорода в зоне дуг, имеющих температуру свыше 4000 °С. В связи с этим электросталь обычно содержит азота больше, чем мартеновская и кислородно-конвертерная сталь.
Кипение и перемешивание обеспечивают также ускорение выравнивания температуры металла и его нагрев. За время окислительного периода необходимо окислить углерода не менее 0,2—0,3 % при выплавке высокоуглеродистой стали (содержащей > 0,6 % С) и 0,3—0,4 % при выплавке средне- и низкоуглеродистой стали (нижний предел указанных значений относится к большегрузным печам). Шлак в конце окислительного периода имеет примерно следующий состав, %: 35-50 СаО; 10-20 Si02; 4-12 MnO; 6-15 MgO; 3-7 А12Оэ; 6-30 FeO; 2-6 Fe203; 0,4-1,5 Р205. Содержание оксидов железа в шлаке зависит от содержания углерода в выплавляемой марке стали; верхний предел характерен для низкоуглеродистых сталей, нижний — для высокоуглеродистых. Окислительный период заканчивается тогда, когда углерод окислен до нижнего предела его содержания в выплавляемой марке стали, а содержание фосфора снижено до 0j010— 0,015 %. Период заканчивают сливом окислительного шлака, который производят путем наклона печи в сторону рабочего окна, а также вручную с помощью деревянных гребков, насаженных на длинные железные прутки. Полное скачивание окислительного шлака необходимо, чтобы содержащийся в нем фосфор не перешел обратно в металл во время восстановительного периода. Окислительный период длится от 30 до 90 мин. Восстановительный период. Задачами периода являются: л) раскисление металла; б)удаление серы; в)доведение химического состава стали до заданного; г) корректировка температуры. Задачи решаются параллельно в течение всего восстановительного периода; раскисление металла производят одновременно осаждающим и диффузионным методами. После удаления окислительного шлака в печь присаживают ферромарганец в количестве, необходимом для обеспечения содержания марганца в металле на его нижнем пределе для ныплавляемой стали, а также ферросилиций из расчета введения в металл 0,10—0,15 % кремния и алюминий в количестве 0,03—0,1 %. Эти добавки вводят для обеспечения осаждающего раскисления металла. Далее наводят шлак, вводя в печь известь, плавиковый шпат и шамотный бой в соотношении 5:1:1 в количестве 2-4 % от массы металла. Через 10—15 мин шлаковая смесь расплавляется, и после образования жидкоподвижного шлака приступают к диффузионному раскислению ванны. Периодически, через 10—12 мин, в печь вводят порции раскислительной смеси из извести, плавикового шпата и раскислителя. Первые 15—20 мин в качестве раскислителя в этой смеси используют молотый кокс (углерод), далее вместо него молотый ферросилиций; иногда допускается дача порций чистого кокса или ферросилиция. На некоторых марках стали в конце восстановительного периода в состав раскислительной смеси вводят более сильные раскислите ли — молотый силико-кальций и порошкообразный алюминий. Обычно расход кокса на раскисление под белым шлаком составляет 1—2 кг/т металла. Расход ферросилиция определяют с учетом того, что около 50 % кремния переходит в металл; в течение восстановительного периода содержание кремния в металле за счет присадок на шлак порошкообразного ферросилиция доводят до 0,25—0,35 % (что соответствует его содержанию в нелегированных кремнием сталях). Суть диффузионного раскисления, протекающего в течение всего периода заключается в следующем. Поскольку раскисляющие вещества применяют! в порошкообразном виде, плотность их невелика и они очень медленно опускаются через слой шлака. В шлаке протекают следующие реакции раскисления: (FeO) + С = Fe + CO; 2(FeO) + Si = 2Fe + (SiQ2) и т.п.
По мере диффузионного раскисления постепенно уменьшается содержание FeO в шлаке и пробы застывшего шлака светлеют, а затем становятся почти белыми. Белый цвет шлака характеризует низкое содержание в нем FeO. При охлаждении такой шлак рассыпается в порошок. Белый шлак конца восстановительного периода имеет следующий состав, %: 53-60 СаО; 15-25 Si02; 7-15 MgO; 5-8 А12Оэ; 5-10 CaF2; 0,8-1,5 CaS; < 0,5 FeO; < 0,5 MnO. Во время восстановительного периода успешно идет десульфурация, что объясняется высокой основностью шлака (CaO/Si02 = 2,7-3,3) и низким (< 0,5 %) содержанием в нем FeO, обеспечивающими сдвиг равновесия реакции десульфура-ции [S] + Fe + (СаО) = (CaS) + (FeO) вправо (в сторону более полного перехода серы в шлак). Коэффициент распределения серы между шлаком и металлом (S)/[S] составляет 20-60. В конце восстановительного периода, когда шлак и металл раскислены, проводят легирование металла элементами, имеющими значительное химическое сродство к кислороду (подробнее см. ниже). Для улучшения перемешивания шлака и металла и интенсификации медленно идущих процессов перехода в шлак серы* кислорода и неметаллических включений в восстановительный период рекомендуется применять электромагнитное перемешивание металла. Длительность восстановительного периода составляет 40-100 мин. За 10-20 мин до выпуска проводят, если это необходимо, корректировку содержания кремния в металле, вводя в печь кусковой ферросилиций. Для конечного раскисления за 2—3 мин до выпуска в металл присаживают 0,4—1,0 кг алюминия на 1 т стали, расход алюминия в этих пределах возрастает при снижении содержания углерода в выплавляемой стали. Выпуск стали из печи в ковш производят совместно со шлаком. Интенсивное перемешивание металла со шлаком в ковше обеспечивает дополнительное рафинирование — из металла в белый шлак переходят сера и неметаллические включения. По ходу плавки в экспресс-лаборатории контролируют изменение состава металла и шлака, измеряют температуру металла термопарами погружения. Иногда восстановительный период проводят не под белым, а под карбидным шлаком, который отличается от белого наличием карбида кальция (СаС2) и более высокой основностью. При этом наведенный в начале восстановительного периода шлак раскисляют повышенным количеством кокса (2—3 кг/т), после чего печь герметизируют. При таких условиях в зоне электрических дуг идет реакция СаО + ЗС = СаС2 + СО. Образующийся карбид кальция является энергичным рас-кислителем, и наличие его в шлаке обеспечивает более полное, чем под белым шлаком, раскисление и десульфурацию. Выдержка под карбидным шлаком, который содержит 1,5—2,5 % СаС2, составляет 30-40 мин. Карбид кальция хорошо смачивает металл, поэтому при выпуске плавки в ковш под карбидным шлаком, металл загрязняется мелкими частичками шлака. Для предотвращения этого карбидный шлак за 20-30 мин до выпуска переводят в белый. Для этого в печь открывают доступ воздуху, открывая рабочее окно. Кислород ноздуха окисляет карбид кальция с образованием СаО и СО, н результате чего карбидный шлак превращается в белый. Порядок легирования. При выплавке легированных сталей в дуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду. Элементы, обладающие меньшим сродством к кислороду, чем железо (никель, молибден), во время плавки не окисляются, и их вводят в начальные периоды плавки — никель в завалку, а молибден в конце плавления или в начале окислительного периода. Хром и марганец обладают ббльшим сродством к кислороду, чем железо. Поэтому металл легируют хромом и марганцем после слива окислительного шлака в начале восстановительного периода.
Кремний, ванадий и особенно титан и алюминий обладают большим сродством к кислороду и легко окисляются. Легирование стали феррованадием производят за 15—35 мин до выпуска, ферросилицием — за 10—20 мин до выпуска. Ферро-титан вводят в печь за 5—15 мин до выпуска либо в ковш. Алюминий вводят за 2—3 мин до выпуска в печь. 3. Выплавка стали методом переплава На металлургическом заводе отходы легированной стали, разливаемой в изложницы, достигают 25—40 %. По мере нако*-пления из этих отходов выплавляют сталь методом переплава. Плавку ведут без окисления (без окислительного периода) или с непродолжительной продувкой кислородом, что позволяет сохранить значительную часть содержащихся в отходах ценных легирующих элементов. При плавке без окисления углерод и фосфор не окисляются, поэтому содержание фосфора в шихте не должно быть выше его допустимых пределов в готовой стали, а содержание углерода на 0,05—0,1 % ниже, чем в готовой стали, в связи с науглероживанием металла электродами. Допустимое количество остальных элементов в шихте определяют с учетом состава выплавляемой стали и того, что в период плавления они угорают в следующем количестве: Элементы.... Al Ti Si V Mn Cr ■ W Величина угара, % 100 80-90 40-60 15-2S 15-25 10-15 5-15 В шихту помимо легированных отходов вводят мягкое железо — шихтовую заготовку с низким содержанием углерода и фосфора и, при необходимости, феррохром и ферровольфрам. Загрузку и плавление шихты производят как при обычной плавке; в период плавления загружают 1—1,5% извести или известняка. После расплавления шлак как правило не скачи- вают, сразу приступая к проведению восстановительного периода. При этом раскисление, десульфурацию и легирование металла производят обычным способом. При диффузионном раскислении из шлака восстанавливаются хром, вольфрам и ванадий. Если после расплавления шлак получился густым из-за высокого содержания оксида магния, его скачивают и наводят новый. При выплавке методом переплава сокращается расход ферросплавов, на 10—30 % возрастает производительность печи, на 10—20 % сокращается расход электроэнергии и электродов. На плавках с продувкой кислородом угар элементов выше, но кратковременное кипение обеспечивает снижение содержания водорода и азота. Шихту подбирают так, чтобы содержание углерода было на 0,1-0,25 % выше заданного содержания в стали. Продувку ведут после расплавления шихты, окисляя избыточный углерод. После окончания продувки шлак скачивают. Если в шихте содержались хром, вольфрам и ванадий, шлак перед скачиванием раскисляют, восстанавливая эти элементы. Далее наводят новый шлак и проводят восстановительный период как на обычной плавке. 4. Разновидности технологии плавки и большегрузных печах Описанная выше традиционная технология электроплавки с длительным (до 1,5 ч) восстановиительным периодом применялась в течение десятилетий и до сих пор остается основной технологией, по которой выплавляют стали сложного электропечного сортамента в печах емкостью 5—40 т. В этой технологии высокое качество стали обеспечивалось в первую очередь за счет формирования во время восстановительного периода шлака с очень низким (< 0,5 %) содержанием оксидов железа и длительной выдержки под этим шлаком, необходимой для протекания медленно идущих процессов раскисления, десульфурации и удаления неметаллических включений. Однако опыт эксплуатации сооружаемых в последние годы большегрузных (80—300 т) печей показал, что применение традиционной технологии не обеспечивает получения в этих печах сталей электропечного сортамента высокого качества. Это объясняется рядом факторов. Одним из них является то, что в большегрузных печах приходится использовать менее качественный стальной лом, который отличается легковесностью, загрязненностью ржавчиной и различными примесями, а также непостоянством упомянутых характеристик его качества. Это приводит к нестабильности протекания периода плавления и значительным колебаниям в количестве образующегося за время плавления шлака, его основности и окисленности, а также к значительным колебаниям в содержании углерода и фосфора в металле к моменту расплавления шихты. Это не позволяет иметь стабильную технологию окислительного периода: в частности, существенно возрастает расход окислителей, а в конце периода металл и шлак более окислены, чем в малых печах. Другим важным фактором, определившим выбор технологии плавки в большегрузных печах, стала малая эффективность восстановительного периода, поскольку трудно и зачастую невозможно получить шлак с низким содержанием FeO даже при интенсивной его обработке порошкообразными раскислите лями. Причины этого следующие: из большегрузных печей не удается полностью удалить окислительный шлак, содержащий много FeO; такие печи оборудованы мощными устройствами для отсоса печных газов через свод, работа которых вызывает подсос воздуха в печь, препятствуя созданию в печи восстановительной атмосферы; за время плавления магнезитовая набивка пода поглощает много FeO, и этот оксид во время восстановительного периода будет переходить из пода в шлак. Условия проведения восстановительного периода ухудшаются также в связи с тем, что в крупных печах заметно меньше поверхность контакта шлак—металл, которая должна быть достаточно большой для обеспечения медленно протекающих процессов диффузии серы и кислорода из металла в шлак. Из-за большой глубины ванны удельная поверхность контакта шлак—металл для печи емкостью 100 т составляет около 0,2 м2/т, в то время как для 10-т печи — около 6 м2/т. Еще одной неблагоприятной особенностью работы большегрузных печей является то, что при увеличении выдержки жидкого металла в печи наблюдается усиленное растворение в шлаке футеровки; шлак в результате этого содержит повы- шенное количество MgO и становится густым, малореакцион-носпособным. Это обстоятельство снижает эффективность рафинирования металла и заставляет снижать длительность восстановительного периода. Перечисленные выше факторы привели к тому, что в большегрузных печах вынуждены были отказаться от традиционной технологии с проведением длительного восстановительного периода и диффузионного раскисления. За время эксплуатации таких печей, оборудованных невысокомощными (400-500 кВ ' А/т и менее), разработан ряд разновидностей упрощенной технологии плавки. Ниже описаны разновидности такой технологии, применяемые на отечественных заводах. Для всех этих технологий характерны следующие особенности начальной стадии плавки: для обеспечения требуемого содержания углерода в металле и в связи с непостоянным его угаром в период расплавления в шихту вводят повышенное количество чугуна (до 30 % от массы шихты при выплавке углеродистых сталей); с тем, чтобы совместить дефосфорацию с расплавлением и с целью сокращения периодов плавления и окислительного в завалку вводят железную руду или агломерат в количестве до 2 % от массы шихты и известь (до 4 %); шихту загружают в два приема, в связи с тем, что весь легковесный лом обычно не умещается в загрузочной корзине; сначала загружают основную массу лома и после его частичного расплавления и оседания делают "подвалку" — корзиной загружают оставшуюся часть лома. Одношлаковый процесс Технологию выплавки под одним шлаком без восстановительного периода применяют для выплавки сталей упрощенного ("мартеновского") сортамента. Обычно это углеродистые и низколегированные стали с легированием хромом, кремнием, марганцем, никелем. В шихту в зависимости от требуемого содержания углерода в стали вводят до 25—30% чушкового чугуна. С тем, чтобы совместить дефосфорацию с расплавлением в завалку дают 2—4 % извести и до 1,5 % железной руды (агломерата, окатышей). После расплавления шихты из печи самотеком удаляют максимальное количество шлака и начинают продувку ванны
Выплавка низколегированных кремнистых сталей. Описанная выше технология не обеспечивает стабильного получения заданного содержания кремния в сталях, легированных этим элементом, обладающим более высоким сродством к кислороду, чем марганец и хром. Угар кремния колеблется в широких пределах вследствие больших колебаний в окисленности шлаков после окончания продувки. Поэтому при выплавке легированных кремнием сталей применяют технологию плавки с частичным раскислением шлака. Основные ее отличия от описанной выше заключаются в следующем. После окончания продувки в печь вводят ферромарганец для получения заданного содержания марганца в стали и немного 65 %-ного ферросилиция (до 2 кг на 1т стали) для частичного раскисления металла и на шлак дают раскис-лительную смесь из извести, плавикового шпата и молотого кокса с расходом кокса 1—2 кг/т, что снижает окисленность шлака. После непродолжительной выдержки металл выпускают в ковш, куда для окончательного раскисления и легирования дают ферросилиций и алюминий. Технология одношлакового процесса позволяет сократить длительность плавки, расход электроэнергии, огнеупоров и шлакообразующих. Технология с обработкой металла на выпуске печным шлаком Технология находит применение на отечественных большегрузных печах при отсутствии в электросталеплавильном цехе установок вцепечной обработки, которые могли бы обеспечить в ковше процессы рафинирования, раскисления и доведения состава металла до заданного. Эта технология предусматривает проведение короткого восстановительного периода (короткой доводки), в течение которого раскисляют шлак, что позволяет снизить угар вводимых в печь легирующих добавок, и затем слив из печи в ковш раскисленного шлака вместе с металлом с целью рафинирования металла от серы и оксидных неметаллических включений. Загрузку шихты ведут двумя корзинами. В завалку вводят до 25—30 % чугуна, иногда с добавкой кокса, 2—3 % извести и до 1-1,5 % железной руды (агломерата, окатышей). В конце плавления и в окислительном периоде ведут продувку нанны кислородом, подаваемым через сводовую фурму. После получения требуемого для данной марки стали содержания угллерода продувку заканчивают и сливают большую часть шлака окислительного периода (75—80 % шлака). Далее в печь загружают ферросилиций из расчета ввести в металл около 0,15 % кремния, ферромарганец, вводя заданное количество марганца, немного алюминия и, если необходимо, феррохром. Наводят новый шлак добавками извести, плавикового шпата и шамота (30; 2—3 и 3—7 кг/т соответственно). За нремя восстановительного периода, длящегося 20—40 мин, шлак раскисляют молотым коксом (2—3 кг/т) и молотым 75 %-ным ферросилицием (до 2 кг/т) и иногда порошкообразным алюминием. В середине Периода на основании результатов анализа отбираемых проб металла в печь вводят корректирующие добавки! ферросплавов. За 5—10 мин до выпуска шлак разжижают добавкой плавикового шпата (~ 4 кг/т) так, чтобы содержание CaF2 в шлаке было 10—15 %. Столь высокое содержание CaF2 необходимо для обеспечения малой вязкости и высокой рафинирующей способности шлака. Перед выпуском шлак дополнительно раскисляют порошкообразным алюминием (0,8 кг/т); необходимо, чтобы конечный шлак содержал менее 1 % FeO и более 50 % оксида кальция при основности 2,7—3,4. При выпуске в ковш сначала сливают шлак, а затем металл, что обеспечивает их
интенсивное перемешивание, десульфурацию и удаление неметаллических включений. Алюминий для окончательного р
|
||||||||||||
Последнее изменение этой страницы: 2017-02-17; просмотров: 267; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.149.15 (0.015 с.) |