ТОП 10:

ВЫПЛАВКА СТАЛИ В ОСНОВНЫХ ДУГОВЫХ ЭЛЕКТРОПЕЧАХ



1. Шихтовые материалы электроплавки

Основной составляющей шихты (75-100 %) электроплавки является стальной лом. Лом не должен содержать цветных металлов и должен иметь минимальное количество никеля и меди; желательно, чтобы содержание фосфора в ломе не пре­вышало 0,05 %. При более высоком содержании фосфора про­должительность плавки возрастает. Лом не должен быть сильно окисленным (ржавым). Ржавчина — гидрат оксида же­леза, с ней вносится в металл много водорода. Лом должен быть тяжеловесным, чтобы обеспечивалась загрузка шихты в один прием (одной корзиной). При легковесном ломе после частичного расплавления первой порции шихты приходится вновь открывать печь и подсаживать шихту, что увеличивает продолжительность плавки.

В последние годы расширяется применение металлизован-ных окатышей и губчатого железа — продуктов прямого вос-


 




становления обогащенных железных руд. Они содержат 85—93% Fe, основными примесями являются оксиды железа, Si02 иА12Оэ.

Отличительная особенность этого сырья — наличие угле­рода от 0,2-0,5 до 2 % и очень низкое содержание серы, фосфора, никеля, меди и других примесей, обычно имеющихся в стальном ломе. Это позволяет выплавлять сталь, отличаю­щуюся повышенной чистотой от примесей.

Переплав отходов легированных сталей позволяет эконо­мить дорогие ферросплавы. Поэтому эти отходы собирают и хранят рассортированными по химическому составу в отдель­ных закромах. Их используют при выплавке сталей, содержа­щих те же легирующие элементы, что иотходы.

Для повышения содержания углерода в шихте используют чугун, кокс и электродный бой.

Основное требование к чугуну — минимальное содержание фосфора; с тем, чтобы не вносить много фосфора в шихту малых (< 40 т) печей вводят не более 10 % чугуна, а в большегрузных не более 25 %.

В качестве шлакообразующих в основных печах применяют известь, известняк, плавиковый шпат, боксит, шамотный бой; в кислых печах — кварцевый песок, шамотный бой, из­весть.

В качестве окислителей используют железную руду, про­катную окалину, агломерат, железорудные окатыши, газооб­разный кислород.

К шлакообразующим и окислителям предъявляются те же требования, что и при других сталеплавильных процессах. В частности, известь должна содержать более 90 % СаО, менее 2 % Si02, менее 0,1 % S и быть свежеобожженной, чтобы не вносить в металл водород. Железная руда должна содержать менее 8% Si02, поскольку он понижает основность шлака, менее 0,05 % S и менее 0,2 % Р; желательно применять руду с размером кусков 40—100 мм, поскольку такие куски легко проходят через слой шлака и непосредственно реагируют с металлом.

В плавиковом шпате, применяемом для разжижения шлака, содержание CaF2 должно превышать 85 %.

В электросталеплавильном производстве для легирования и раскисления применяются практически все известные фер­росплавы и легирующие.


2. Традиционная технологияс восстановительным периодом

Технология плавки с окислительным и восстановительным периодами или традиционная технология применяется в тече­ние десятилетий на печах вместимостью =s 40 т для выплавки высококачественных легированных сталей. Эту технологию называют также двухшлаковой, а процесс плавки — двухшла-ковым, поскольку по ходу плавки вначале (периоды плав­ления и окислительный) в печи наводят окислительный шлак, то есть содержащий много оксидов железа, а затем его сливают и в восстановительном периоде наводят новый (вто­рой) шлак, не содержащий оксидов железа. До недавнего времени (до широкого внедрения процессов внепечной обра­ботки) плавка в электродуговых печах по этой технологии была единственным способом получения легированных высоко­качественных сталей и такие стали назывались сталями "электропечного сортамента". Высокое качество металла обеспечивалось за счет того, что в окислительном периоде создавались условия для удаления до очень низких содержа-

Рис. 136. Технологические операции электроплавки:

а — заправка; б — загрузка шихты; в — плавление; г — скачивание шлака; д — печь после расплавления шихты; е — выпуск стали; / — заправочная машина; 2 — загрузочная корзина; 3 — стальной лом; 4 — гребок для скачивания шлака; 5 — шлаковый ковш (чаша); 6 — сталеразливочный ковш


 




ний фосфора и для дегазации металла (удаления растворен­ных водорода и азота за счет кипения ванны), а в восста­новительном периоде — условия для получения низких содер­жаний кислорода и серы и соответственно оксидных и суль­фидных неметаллических включений, а также для ввода в ме­талл легирующих добавок без их значительного угара.

Плавка состоит из периодов: 1) заправка печи; 2) загрузка шихты; 3) плавление; 4) окислительный период; 5) восстановительный период; 6) выпуск стали. На рис. 136 показан ряд выполняемых в процессе плавки операций.

Заправка заключается в том, что после выпуска плавки на поврежденные участки набивки пода или на всю ее по­верхность забрасывают магнезитовый порошок (иногда поро­шок с добавкой пека или смолы), что позволяет поддержи­вать постоянной толщину изнашивающегося слоя набивки. Заправку ведут вручную и с помощью различных заправочных машин. Одна из них состоит из бункера, под которым имеет­ся горизонтально расположенный вращающийся диск; машину опускают (см. рис. 136, а) сверху в открытую печь и высы­пающийся из бункера порошок разбрасывается диском по окружности. Длительность заправки 10—20 мин.

Загрузка шихты. При выплавке стали в малых и средних печах шихта на 90—100 % состоит из стального лома. Для повышения содержания углерода в шихту вводят чугун (< 10 %), а также электродный бой или кокс. Общее их ко­личество должно быть таким, чтобы содержание углерода в шихте превышало нижний предел его содержания в готовой стали на 0,3 % при выплавке высокоуглеродистых сталей, на 0,3—0,4 % при выплавке среднеуглеродистых и на 0,5 % для низкоуглеродистых. Этот предел несколько снижается при росте емкости печи. Чтобы совместить удаление части фос­фора с плавлением шихты в завалку рекомендуется давать 2—3 % извести.

Загрузку шихты ведут с помощью корзины (бадьи). Ее вводят (см. рис. 136, б) в открытую печь сверху и, раск­рывая дно, высыпают шихту на подину печи. Загрузку всей шихты производят одной, а иногда двумя корзинами. Дли­тельность загрузки одной корзины равна ~ 5 мин. В корзины шихту укладывают в следующей последовательности: на дно кладут часть мелочи, чтобы защитить подину от ударов тяжелых кусков лома, затем в центре укладывают крупный


лом, а по периферии средний и сверху - оставшийся мелкий лом. Для уменьшения угара кокс и электродный бой кладут под слой крупного лома.

Плавление. После окончания завалки электроды опускают почти до касания с шихтой и включают ток. Под действием высокой температуры дуг шихта под электродами плавится, жидкий металл стекает вниз, накапливаясь в центральной части подины. Электроды постепенно опускаются, проплавляя в шихте "колодцы" (рис. 136, в и рис. 137, б) и достигая крайнего нижнего положения. В дальнейшем по мере увеличе­ния количества жидкого металла электроды поднимаются, так как автоматические регуляторы поддерживают длину дуги постоянной.

Плавление ведут при максимальной мощности трансформа­тора. На печах вместимостью 25 т и более для ускорения плавления осуществляют вращение ванны. Когда электроды проплавят в шихте три "колодца", свод и электроды припод­нимают, печь поворачивают сначала в одну сторону на 40°, проплавляют колодцы в новых местах, а затем поворачивают печь в другую сторону на 80°. Таким образом проплавляют девять колодцев.

В период плавления необходимо обеспечить раннее обра­зование шлака, предохраняющего металл от насыщения газами и науглероживания электродами. С этой целью, если в за­валку не давали известь, в проплавляемые электродами ко­лодцы несколькими порциями присаживают известь (1—3 % от массы металла).

Во время плавления происходит окисление составляющих шихты, формируется шлак, происходит частичное удаление в шлак фосфора и серы. Окисление идет за счет кислорода воздуха, окалины и ржавчины, внесенных металлической ших­той. За время плавления полностью окисляется кремний, 40—60 % марганца, частично окисляется углерод и железо. В

Рис. 137. Характер плавле­ния шихты в высокомощной печи (а) и в печи с невысо­комощным трансформатором 00

29-3810


формировании шлака наряду с продуктами окисления (Si02, MnO, FeO) принимает участие оксид кальция извести. Шлак к концу периода плавления имеет примерно следующий состав, %: 35-40 СаО; 15-25 Si02; 8-15 MgO; 5-20 FeO; 5-10 MnO; 3—7 Al203; 0,5—1,2 P2Os. В зоне электрических дуг за вре­мя плавления испаряется от 3 до 6 % металла, преимущест­венно железа.

Для ускорения плавления иногда применяют газо­кислородные горелки, вводимые в рабочее пространство че­рез свод или стенки печи. За счет тепла, выделяющегося от сжигания газа, сокращается длительность плавления и рас­ход электроэнергии (на 10-15%). С этой же целью часто применяют продувку кислородом, вводимым в жидкий металл после расплавления 3/4 шихты с помощью фурм или стальных футерованных трубок, Окисление железа, а также марганца, кремния и других примесей металла газообразным кислородом протекает с выделением значительного количества тепла, которое ускоряет расплавление лома. При расходе кислорода 4—6 м3/т длительность плавления сокращается на 10—20 мин.

Продолжительность периода плавления определяется в первую очередь мощностью трансформатора и составляет от 1,2 до 3,0 ч. Расход электроэнергии за время плавления составляет 430—480 кВт • ч/т.

Окислительный период. Задачи окислительного периода плавки: а) уменьшить содержание в металле фосфора до 0,01—0,015 %; б) уменьшить содержание в металле водорода и азота; в) нагреть металл до температуры, близкой к тем­пературе выпуска (на 120-130 °С выше температуры ликви­дуса); г) окислить углерод до нижнего предела его требуе­мого содержания в выплавляемой стали. Особо важную роль в этом периоде играет процесс окисления углерода, поскольку с образующимися при этом пузырями СО удаляются растворен­ные в металле водород и азот, и пузыри вызывают перемеши­вание ванны, ускоряющее нагрев металла и удаление в шлак фосфора.

Окисление примесей ведут, используя либо железную руду (окалину), либо газообразный кислород.

Окислительный период начинается с того, что из печи сливают 65—75 % шлака, образовавшегося в период плавле­ния. Шлак сливают не выключая ток, наклонив печь в сторо­ну рабочего окна на 10-12° (см. рис. 136, г). Слив шлака


производят для того, чтобы удалить из печи перешедший в шлак фосфор. Удалив шлак, в печь присаживают шлакообра-«ующие: 1—1,5 % извести и при необходимости 0,15—0,25 % плавикового шпата, шамотного боя или боксита.

После сформирования жидкоподвижного шлака в ванну в течение всего окислительного периода вводят порциями же­лезную руду с известью либо ведут продувку кислородом; печь для слива шлака в течение периода наклонена в сторо­ну рабочего окна. Присадка руды или продувка кислородом вызывает интенсивное окисление углерода с выделением пу­зырей СО, вспенивающими шлак, в результате чего он сте­кает из печи через порог рабочего окна.

Общий расход руды составляет 3-6,5 % от массы металла. С тем, чтобы предотвратить сильное охлаждение металла, единовременная порция руды не должна быть более 0,5—1 %. Газообразный кислород вводят в металл по футерованным же­лезным трубкам через рабочее окно или с помощью водо-охлаждаемой фурмы через отверстие в своде печи. При этом трубки должны быть погружены в металл на глубину 150-200 мм. Скорость обезуглероживания газообразным кис­лородом в 3-5 раз больше, чем железной рудой, что дает возможность сократить продолжительность окислительного периода на 20-30 мин. Общая длительность продувки ванны составляет 10-20 мин, расход кислорода 3-15 м3/стали. На­ряду с углеродом окисляется марганец; всего за время плавления и окислительного периода окисляется 60—70% Мп, содержащегося в шихте.

В течение всего окислительного периода идет дефосфора-ция металла по реакции:

2[P]+5(FeO)+3(CaO) = (ЗСаО • P2Os)+5Fe+767290 Дж/моль.

Для успешного протекания реакции необходимы высокие осно­вность шлака и концентрация оксидов железа в нем, а также пониженная температура. Эти условия создаются при совмес­тном введении в печь извести и руды. Полнота дефосфорации повышается в результате перемешивания шлака и металла при кипении и вследствие непрерывного обновления шлака (слив шлака и периодические добавки новых порций шлакообразую-ших). Коэффициент распределения фосфора между шлаком и металлом (P2Os)/[P] изменяется в пределах 50—100, обычно возрастая при росте основности и окисленности шлака.


 




Из-за высокого содержания оксидов железа в шлаках окислительного периода условия для протекания реакции десульфурации являются неблагоприятными, и десульфурация получает ограниченное развитие. Коэффициент распределения серы между шлаком и металлом (S)/[S] равен 3—5, а всего за время плавления и окислительного периода в шлак уда­ляется до 30 % серы, содержащейся в шихте.

При кипении вместе с пузырьками СО из металла удаляют­ся водород и азот. Этот процесс имеет большое значение для повышения качества электростали, поскольку в электро­печи в зоне электрических дуг идет интенсивное насыщение металла азотом и водородом. Это насыщение ускоряется в результате диссоциации молекул азота и водорода в зоне дуг, имеющих температуру свыше 4000 °С. В связи с этим электросталь обычно содержит азота больше, чем мартенов­ская и кислородно-конвертерная сталь.

Кипение и перемешивание обеспечивают также ускорение выравнивания температуры металла и его нагрев. За время окислительного периода необходимо окислить углерода не менее 0,2—0,3 % при выплавке высокоуглеродистой стали (содержащей > 0,6 % С) и 0,3—0,4 % при выплавке средне- и низкоуглеродистой стали (нижний предел указанных значений относится к большегрузным печам).

Шлак в конце окислительного периода имеет примерно следующий состав, %: 35-50 СаО; 10-20 Si02; 4-12 MnO; 6-15 MgO; 3-7 А12Оэ; 6-30 FeO; 2-6 Fe203; 0,4-1,5 Р205. Содержание оксидов железа в шлаке зависит от содержания углерода в выплавляемой марке стали; верхний предел характерен для низкоуглеродистых сталей, нижний — для высокоуглеродистых.

Окислительный период заканчивается тогда, когда угле­род окислен до нижнего предела его содержания в выплавля­емой марке стали, а содержание фосфора снижено до 0j010— 0,015 %. Период заканчивают сливом окислительного шлака, который производят путем наклона печи в сторону рабочего окна, а также вручную с помощью деревянных гребков, наса­женных на длинные железные прутки. Полное скачивание оки­слительного шлака необходимо, чтобы содержащийся в нем фосфор не перешел обратно в металл во время восстанови­тельного периода. Окислительный период длится от 30 до 90 мин.


Восстановительный период. Задачами периода являются: л) раскисление металла; б)удаление серы; в)доведение химического состава стали до заданного; г) корректировка температуры. Задачи решаются параллельно в течение всего восстановительного периода; раскисление металла произво­дят одновременно осаждающим и диффузионным методами.

После удаления окислительного шлака в печь присаживают ферромарганец в количестве, необходимом для обеспечения содержания марганца в металле на его нижнем пределе для ныплавляемой стали, а также ферросилиций из расчета вве­дения в металл 0,10—0,15 % кремния и алюминий в количест­ве 0,03—0,1 %. Эти добавки вводят для обеспечения осажда­ющего раскисления металла.

Далее наводят шлак, вводя в печь известь, плавиковый шпат и шамотный бой в соотношении 5:1:1 в количестве 2-4 % от массы металла. Через 10—15 мин шлаковая смесь расплавляется, и после образования жидкоподвижного шлака приступают к диффузионному раскислению ванны. Периодичес­ки, через 10—12 мин, в печь вводят порции раскислительной смеси из извести, плавикового шпата и раскислителя. Пер­вые 15—20 мин в качестве раскислителя в этой смеси используют молотый кокс (углерод), далее вместо него молотый ферросилиций; иногда допускается дача порций чис­того кокса или ферросилиция. На некоторых марках стали в конце восстановительного периода в состав раскислительной смеси вводят более сильные раскислите ли — молотый силико-кальций и порошкообразный алюминий.

Обычно расход кокса на раскисление под белым шлаком составляет 1—2 кг/т металла. Расход ферросилиция опреде­ляют с учетом того, что около 50 % кремния переходит в металл; в течение восстановительного периода содержание кремния в металле за счет присадок на шлак порошкообраз­ного ферросилиция доводят до 0,25—0,35 % (что соответст­вует его содержанию в нелегированных кремнием сталях).

Суть диффузионного раскисления, протекающего в течение всего периода заключается в следующем. Поскольку раскис­ляющие вещества применяют! в порошкообразном виде, плот­ность их невелика и они очень медленно опускаются через слой шлака. В шлаке протекают следующие реакции раскисле­ния:

(FeO) + С = Fe + CO; 2(FeO) + Si = 2Fe + (SiQ2) и т.п.


В результате содержание FeO в шлаке уменьшается и в соот­ветствии с законом распределения (FeO)/[FeO] = const кис­лород (в виде FeO) начинает путем диффузии переходить из металла в шлак (диффузионное раскисление). Преимущество диффузионного раскисления заключается в том, что посколь­ку реакции раскисления идут в шлаке, выплавляемая сталь не загрязняется продуктами раскисления— образующимися оксидами, т.е. будет содержать меньше оксидных неметалли­ческих включений.

По мере диффузионного раскисления постепенно умень­шается содержание FeO в шлаке и пробы застывшего шлака светлеют, а затем становятся почти белыми. Белый цвет шлака характеризует низкое содержание в нем FeO. При охлаждении такой шлак рассыпается в порошок.

Белый шлак конца восстановительного периода имеет сле­дующий состав, %: 53-60 СаО; 15-25 Si02; 7-15 MgO; 5-8 А12Оэ; 5-10 CaF2; 0,8-1,5 CaS; < 0,5 FeO; < 0,5 MnO.

Во время восстановительного периода успешно идет десульфурация, что объясняется высокой основностью шлака (CaO/Si02 = 2,7-3,3) и низким (< 0,5 %) содержанием в нем FeO, обеспечивающими сдвиг равновесия реакции десульфура-ции

[S] + Fe + (СаО) = (CaS) + (FeO)

вправо (в сторону более полного перехода серы в шлак). Коэффициент распределения серы между шлаком и металлом (S)/[S] составляет 20-60.

В конце восстановительного периода, когда шлак и ме­талл раскислены, проводят легирование металла элементами, имеющими значительное химическое сродство к кислороду (подробнее см. ниже).

Для улучшения перемешивания шлака и металла и интенси­фикации медленно идущих процессов перехода в шлак серы* кислорода и неметаллических включений в восстановительный период рекомендуется применять электромагнитное перемеши­вание металла.

Длительность восстановительного периода составляет 40-100 мин. За 10-20 мин до выпуска проводят, если это необходимо, корректировку содержания кремния в металле, вводя в печь кусковой ферросилиций. Для конечного раскис­ления за 2—3 мин до выпуска в металл присаживают


0,4—1,0 кг алюминия на 1 т стали, расход алюминия в этих пределах возрастает при снижении содержания углерода в выплавляемой стали. Выпуск стали из печи в ковш произво­дят совместно со шлаком. Интенсивное перемешивание метал­ла со шлаком в ковше обеспечивает дополнительное рафини­рование — из металла в белый шлак переходят сера и неме­таллические включения. По ходу плавки в экспресс-лаборатории контролируют изменение состава металла и шла­ка, измеряют температуру металла термопарами погружения.

Иногда восстановительный период проводят не под белым, а под карбидным шлаком, который отличается от белого на­личием карбида кальция (СаС2) и более высокой основ­ностью. При этом наведенный в начале восстановительного периода шлак раскисляют повышенным количеством кокса (2—3 кг/т), после чего печь герметизируют. При таких условиях в зоне электрических дуг идет реакция

СаО + ЗС = СаС2 + СО.

Образующийся карбид кальция является энергичным рас-кислителем, и наличие его в шлаке обеспечивает более пол­ное, чем под белым шлаком, раскисление и десульфурацию. Выдержка под карбидным шлаком, который содержит 1,5—2,5 % СаС2, составляет 30-40 мин. Карбид кальция хорошо смачи­вает металл, поэтому при выпуске плавки в ковш под кар­бидным шлаком, металл загрязняется мелкими частичками шлака. Для предотвращения этого карбидный шлак за 20-30 мин до выпуска переводят в белый. Для этого в печь открывают доступ воздуху, открывая рабочее окно. Кислород ноздуха окисляет карбид кальция с образованием СаО и СО, н результате чего карбидный шлак превращается в белый.

Порядок легирования. При выплавке легированных сталей в дуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду. Элементы, обладающие меньшим сродством к кислороду, чем железо (никель, молиб­ден), во время плавки не окисляются, и их вводят в на­чальные периоды плавки — никель в завалку, а молибден в конце плавления или в начале окислительного периода.

Хром и марганец обладают ббльшим сродством к кислоро­ду, чем железо. Поэтому металл легируют хромом и марган­цем после слива окислительного шлака в начале восстанови­тельного периода.


Вольфрам обладает ббльшим сродством к кислороду, чем железо, он может окисляться и его обычно вводят в начале восстановительного периода. Особенность легирования воль­фрамом заключается в том, что из-за высокой температуры плавления ферровольфрама (~2000°С) он растворяется мед­ленно и для корректировки содержания вольфрама в металле феррофольфрам можно присаживать в ванну не позднее, чем за 30 мин до выпуска.

Кремний, ванадий и особенно титан и алюминий обладают большим сродством к кислороду и легко окисляются. Легиро­вание стали феррованадием производят за 15—35 мин до вы­пуска, ферросилицием — за 10—20 мин до выпуска. Ферро-титан вводят в печь за 5—15 мин до выпуска либо в ковш. Алюминий вводят за 2—3 мин до выпуска в печь.

3. Выплавка стали методом переплава

На металлургическом заводе отходы легированной стали, разливаемой в изложницы, достигают 25—40 %. По мере нако*-пления из этих отходов выплавляют сталь методом перепла­ва. Плавку ведут без окисления (без окислительного перио­да) или с непродолжительной продувкой кислородом, что по­зволяет сохранить значительную часть содержащихся в отхо­дах ценных легирующих элементов.

При плавке без окисления углерод и фосфор не окисляют­ся, поэтому содержание фосфора в шихте не должно быть вы­ше его допустимых пределов в готовой стали, а содержание углерода на 0,05—0,1 % ниже, чем в готовой стали, в связи с науглероживанием металла электродами. Допустимое коли­чество остальных элементов в шихте определяют с учетом состава выплавляемой стали и того, что в период плавления они угорают в следующем количестве:

Элементы . . . . Al Ti Si V Mn Cr ■ W

Величина угара, % 100 80-90 40-60 15-2S 15-25 10-15 5-15

В шихту помимо легированных отходов вводят мягкое же­лезо — шихтовую заготовку с низким содержанием углерода и фосфора и, при необходимости, феррохром и ферровольфрам.

Загрузку и плавление шихты производят как при обычной плавке; в период плавления загружают 1—1,5% извести или известняка. После расплавления шлак как правило не скачи-


вают, сразу приступая к проведению восстановительного пе­риода. При этом раскисление, десульфурацию и легирование металла производят обычным способом. При диффузионном раскислении из шлака восстанавливаются хром, вольфрам и ванадий. Если после расплавления шлак получился густым из-за высокого содержания оксида магния, его скачивают и наводят новый.

При выплавке методом переплава сокращается расход фер­росплавов, на 10—30 % возрастает производительность печи, на 10—20 % сокращается расход электроэнергии и электро­дов.

На плавках с продувкой кислородом угар элементов выше, но кратковременное кипение обеспечивает снижение содержа­ния водорода и азота. Шихту подбирают так, чтобы содержа­ние углерода было на 0,1-0,25 % выше заданного содержания в стали. Продувку ведут после расплавления шихты, окисляя избыточный углерод. После окончания продувки шлак скачи­вают. Если в шихте содержались хром, вольфрам и ванадий, шлак перед скачиванием раскисляют, восстанавливая эти элементы. Далее наводят новый шлак и проводят восстанови­тельный период как на обычной плавке.

4. Разновидности технологии плавки и большегрузных печах

Описанная выше традиционная технология электроплавки с длительным (до 1,5 ч) восстановиительным периодом приме­нялась в течение десятилетий и до сих пор остается основ­ной технологией, по которой выплавляют стали сложного электропечного сортамента в печах емкостью 5—40 т. В этой технологии высокое качество стали обеспечивалось в первую очередь за счет формирования во время восстановительного периода шлака с очень низким (< 0,5 %) содержанием окси­дов железа и длительной выдержки под этим шлаком, необхо­димой для протекания медленно идущих процессов раскисле­ния, десульфурации и удаления неметаллических включений.

Однако опыт эксплуатации сооружаемых в последние годы большегрузных (80—300 т) печей показал, что применение традиционной технологии не обеспечивает получения в этих печах сталей электропечного сортамента высокого качества. Это объясняется рядом факторов.


Одним из них является то, что в большегрузных печах приходится использовать менее качественный стальной лом, который отличается легковесностью, загрязненностью ржав­чиной и различными примесями, а также непостоянством упо­мянутых характеристик его качества. Это приводит к неста­бильности протекания периода плавления и значительным ко­лебаниям в количестве образующегося за время плавления шлака, его основности и окисленности, а также к значи­тельным колебаниям в содержании углерода и фосфора в ме­талле к моменту расплавления шихты. Это не позволяет иметь стабильную технологию окислительного периода: в частности, существенно возрастает расход окислителей, а в конце периода металл и шлак более окислены, чем в малых печах.

Другим важным фактором, определившим выбор технологии плавки в большегрузных печах, стала малая эффективность восстановительного периода, поскольку трудно и зачастую невозможно получить шлак с низким содержанием FeO даже при интенсивной его обработке порошкообразными раскисли­те лями. Причины этого следующие: из большегрузных печей не удается полностью удалить окислительный шлак, содержа­щий много FeO; такие печи оборудованы мощными устройства­ми для отсоса печных газов через свод, работа которых вы­зывает подсос воздуха в печь, препятствуя созданию в печи восстановительной атмосферы; за время плавления магнези­товая набивка пода поглощает много FeO, и этот оксид во время восстановительного периода будет переходить из пода в шлак.

Условия проведения восстановительного периода ухудша­ются также в связи с тем, что в крупных печах заметно меньше поверхность контакта шлак—металл, которая должна быть достаточно большой для обеспечения медленно протека­ющих процессов диффузии серы и кислорода из металла в шлак. Из-за большой глубины ванны удельная поверхность контакта шлак—металл для печи емкостью 100 т составляет около 0,2 м2/т, в то время как для 10-т печи — около 6 м2/т.

Еще одной неблагоприятной особенностью работы больше­грузных печей является то, что при увеличении выдержки жидкого металла в печи наблюдается усиленное растворение в шлаке футеровки; шлак в результате этого содержит повы-


шенное количество MgO и становится густым, малореакцион-носпособным. Это обстоятельство снижает эффективность ра­финирования металла и заставляет снижать длительность восстановительного периода.

Перечисленные выше факторы привели к тому, что в боль­шегрузных печах вынуждены были отказаться от традиционной технологии с проведением длительного восстановительного периода и диффузионного раскисления. За время эксплуата­ции таких печей, оборудованных невысокомощными (400-500 кВ ' А/т и менее), разработан ряд разновидностей уп­рощенной технологии плавки. Ниже описаны разновидности такой технологии, применяемые на отечественных заводах. Для всех этих технологий характерны следующие особенности начальной стадии плавки:

для обеспечения требуемого содержания углерода в ме­талле и в связи с непостоянным его угаром в период расп­лавления в шихту вводят повышенное количество чугуна (до 30 % от массы шихты при выплавке углеродистых сталей);

с тем, чтобы совместить дефосфорацию с расплавлением и с целью сокращения периодов плавления и окислительного в завалку вводят железную руду или агломерат в количестве до 2 % от массы шихты и известь (до 4 %);

шихту загружают в два приема, в связи с тем, что весь легковесный лом обычно не умещается в загрузочной корзи­не; сначала загружают основную массу лома и после его частичного расплавления и оседания делают "подвалку" — корзиной загружают оставшуюся часть лома. Одношлаковый процесс

Технологию выплавки под одним шлаком без восстановитель­ного периода применяют для выплавки сталей упрощенного ("мартеновского") сортамента. Обычно это углеродистые и низколегированные стали с легированием хромом, кремнием,

марганцем, никелем.

В шихту в зависимости от требуемого содержания углеро­да в стали вводят до 25—30% чушкового чугуна. С тем, чтобы совместить дефосфорацию с расплавлением в завалку дают 2—4 % извести и до 1,5 % железной руды (агломерата,

окатышей).

После расплавления шихты из печи самотеком удаляют максимальное количество шлака и начинают продувку ванны


кислородом, подаваемым через фурму, которую вводят в ра­бочее пространство печи через свод; при этом происходят окисление углерода и дефосфорация металла. При повышенном содержании фосфора в металле перед продувкой в печь за­гружают известь и плавиковый шпат. Продувку ведут до по­лучения заданного содержания углерода в металле. После прекращения продувки в печь загружают силикомарганец или ферромарганец и при необходимости феррохром в количестве, обеспечивающем получение заданного содержания в стали марганца и хрома. Затем сталь выпускают в ковш, куда для получения требуемого содержания кремния и для раскисления вводят ферросилиций и алюминий. Чтобы предотвратить пере­ход из шлака в металл оксидов железа и снизить угар крем­ния и марганца за счет их реагирования с оксидами железа шлака, выпуск организуют, стараясь исключить контакт ме­талла со шлаком: печь наклоняют так, чтобы металл в тече­ние первой трети длительности выпуска шел без шлака. Ни­кель вследствие низкого сродства к кислороду при плавке не окисляется и его можно вводить в завалку.

Выплавка низколегированных кремнистых сталей. Описан­ная выше технология не обеспечивает стабильного получения заданного содержания кремния в сталях, легированных этим элементом, обладающим более высоким сродством к кислоро­ду, чем марганец и хром. Угар кремния колеблется в широ­ких пределах вследствие больших колебаний в окисленности шлаков после окончания продувки.

Поэтому при выплавке легированных кремнием сталей при­меняют технологию плавки с частичным раскислением шлака. Основные ее отличия от описанной выше заключаются в сле­дующем. После окончания продувки в печь вводят ферромар­ганец для получения заданного содержания марганца в стали и немного 65 %-ного ферросилиция (до 2 кг на 1т стали) для частичного раскисления металла и на шлак дают раскис-лительную смесь из извести, плавикового шпата и молотого кокса с расходом кокса 1—2 кг/т, что снижает окисленность шлака. После непродолжительной выдержки металл выпускают в ковш, куда для окончательного раскисления и легирования дают ферросилиций и алюминий.

Технология одношлакового процесса позволяет сократить длительность плавки, расход электроэнергии, огнеупоров и шлакообразующих.


Технология с обработкой металла на выпуске печным шлаком

Технология находит применение на отечественных больше­грузных печах при отсутствии в электросталеплавильном цехе установок вцепечной обработки, которые могли бы обеспечить в ковше процессы рафинирования, раскисления и доведения состава металла до заданного. Эта технология предусматривает проведение короткого восстановительного периода (короткой доводки), в течение которого раскисляют шлак, что позволяет снизить угар вводимых в печь легирую­щих добавок, и затем слив из печи в ковш раскисленного шлака вместе с металлом с целью рафинирования металла от серы и оксидных неметаллических включений.

Загрузку шихты ведут двумя корзинами. В завалку вводят до 25—30 % чугуна, иногда с добавкой кокса, 2—3 % извести и до 1-1,5 % железной руды (агломерата, окатышей). В кон­це плавления и в окислительном периоде ведут продувку нанны кислородом, подаваемым через сводовую фурму. После получения требуемого для данной марки стали содержания угллерода продувку заканчивают и сливают большую часть шлака окислительного периода (75—80 % шлака). Далее в печь загружают ферросилиций из расчета ввести в металл около 0,15 % кремния, ферромарганец, вводя заданное коли­чество марганца, немного алюминия и, если необходимо, фе­ррохром. Наводят новый шлак добавками извести, плавиково­го шпата и шамота (30; 2—3 и 3—7 кг/т соответственно). За нремя восстановительного периода, длящегося 20—40 мин, шлак раскисляют молотым коксом (2—3 кг/т) и молотым 75 %-ным ферросилицием (до 2 кг/т) и иногда порошкообраз­ным алюминием. В середине Периода на основании результа­тов анализа отбираемых проб металла в печь вводят коррек­тирующие добавки! ферросплавов.

За 5—10 мин до выпуска шлак разжижают добавкой плави­кового шпата (~ 4 кг/т) так, чтобы содержание CaF2 в шла­ке было 10—15 %. Столь высокое содержание CaF2 необходимо для обеспечения малой вязкости и высокой рафинирующей способности шлака. Перед выпуском шлак дополнительно рас­кисляют порошкообразным алюминием (0,8 кг/т); необходимо, чтобы конечный шлак содержал менее 1 % FeO и более 50 % оксида кальция при основности 2,7—3,4. При выпуске в ковш сначала сливают шлак, а затем металл, что обеспечивает их


 







Последнее изменение этой страницы: 2017-02-17; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 100.24.125.162 (0.021 с.)