Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Модифицированные методы ЭйлераСодержание книги
Поиск на нашем сайте
Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции в точках с помощью формулы: . Затем находится значение правой части исходного уравнения в средней точке и затем полагается , . Эти формулы являются расчетными формулами первого модифицированного метода Эйлера. Первый модифицированный метод Эйлера является одношаговым методом со вторым порядком точности. Второй модифицированный метод Эйлера – Коши. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения . Затем приближения искомого решения находятся по формуле: . Эти формулы являются расчетными формулами второго модифицированного метода Эйлера – Коши. Второй модифицированный метод Эйлера – Коши так же, как и первый, является одношаговым методом со вторым порядком точности. Оценка погрешности. Приближенная оценка погрешности модифицированных методов Эйлера осуществляется как и для простого метода Эйлера с использованием правила Рунге. Так как оба модифицированных метода Эйлера имеют второй порядок точности, т. е. , то оценка погрешности примет вид: . Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши модифицированными методами Эйлера с заданной точностью . Нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение . Вычисления прекращаются тогда, когда будет выполнено условие: . Приближенным решением будут значения . Пример 2. Применим первый модифицированный метод Эйлера для решения задачи Коши , рассмотренной ранее в предыдущем примере. Возьмем шаг . Тогда , и расчетная формула первого модифицированного метода Эйлера имеет вид: , где , , , . Решение представим в виде таблицы 7. Таблица 7
Третий столбец таблицы 3 содержит приближенное решение . Сравнивая полученное приближенное решение с точным решением, представленном в таблице 2, видим, что погрешность составляет . Пример 3. Применим второй модифицированный метод Эйлера – Коши для решения задачи Коши , рассмотренной ранее в примерах 1 и 2. Так же, как и ранее, зададим шаг . Тогда . В соответствии с данными формулами получим расчетную формулу метода Эйлера – Коши: , где , , , , . Решение представим в виде таблицы 8.
Таблица 8
Таблица 8 заполняется последовательно по строкам, сначала первая строка, затем вторая и т. д. Третий столбец таблицы 8 содержит приближенное решение . Сравним полученное приближенное решение с точным решением, представленном в таблице 7. Видим, что погрешность составляет .
Метод Рунге – Кутта Метод Рунге – Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге – Кутта. Рассмотрим задачу Коши для дифференциального уравнения с начальным условием . Как и в методе Эйлера, выберем шаг и построим сетку с системой узлов . Обозначим через приближенное значение искомого решения в точке . Приведем расчетные формулы метода Рунге – Кутта четвертого порядка точности: , , , , , . Оценка погрешности. Оценка погрешности метода Рунге – Кутта затруднительна. Грубую оценку погрешности дает правило Рунге. Так как метод Рунге – Кутта имеет четвертый порядок точности, т. е. , то оценка погрешности примет вид: . Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши методом Рунге – Кутта четвертого порядка точности с заданной точностью . Нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение . Вычисления прекращаются тогда, когда будет выполнено условие: . Приближенным решением будут значения . Пример 4. Методом Рунге-Кутта четвертого порядка точности найдем решение на отрезке следующей задачи Коши . Возьмем шаг . Тогда . Расчетные формулы имеют вид: , , , , , . Задача имеет точное решение: , поэтому погрешность определяется как абсолютная величина разности между точными и приближенными значениями . Найденные приближенные значения решения и их погрешности представлены в таблице 9. Таблица 9
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-17; просмотров: 738; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.122.90 (0.009 с.) |