A 21 структура клеточных мембран и электролитный состав цитоплазмы, их роль в генезе мп. Натриево-калиевый насос. Ионные каналы мембран. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

A 21 структура клеточных мембран и электролитный состав цитоплазмы, их роль в генезе мп. Натриево-калиевый насос. Ионные каналы мембран.

Поиск

Структура биологических мембран. Фосфолипиды образуют двойной прерывистый слой. В этот слой включены белки, полярные группы которых сохраняют контакт с вод­ной фазой. Некоторые белки пронизывают мембрану насквозь, другие по­гружены в липидный бислой наполовину. Часть белков связана друг с другом; другие в большей или меньшей степени окружены липидами. Одни из них являются ионными каналами, другие со­держат боковые цепи гликозаминогликанов.

Гликокаликс. Поверхность мембраны покрыта гликокаликсом — трехмерной сетью нитей гликозаминогликанов, соединенных между собой при помощи кальциевых мостиков. Гликокаликс обеспечивает механичес­кую прочность мембраны, участвует в межклеточных взаимодействиях, рецепции, иммунологическом дифференцировании, разделяет молекулы веществ, контактирующих с клеткой, по величине и заряду.

Липиды. Молекулы липидов, образующих бислой, амфотерны. Сво­ими гидрофильными головками они обращены в сторону водных фаз (меж­клеточная жидкость и цитоплазма) и формируют внешнюю и внутреннюю поверхности мембраны. Важнейшей особенностью мембранных липидов является способность к перекисному окислению (ПОЛ) с образованием свободных радикалов.

Белки. Функциональное отличие мембраны одной клетки от мем­браны другой определяется наличием в ней специфических мембранных белков.

Белки, погруженные в фосфолипидный слой и пронизывающие его на­сквозь, называются внутренними мембранными белками, или белковыми ка­налами.

Другие белки — периферические — прикреплены к поверхности клетки.

С учетом выполняемых функций мембранные белки всех клеток делят на 5 классов: белки-насосы, белки-каналы, белки-рецепторы, ферменты и структурные белки.

Функции мембран. Важнейшими функциями клеточных мембран являются барьерная, биотрансформирующая, транспортная, рецепторная, генерация электри­ческих потенциалов и образование межклеточных контактов.

Белки-каналы представляют собой пути избирательного переноса ионов и заряженных молекул. Механизм переноса связан с конформацией белка-канала, в результате которой он открывается или закрывается. Взаимодействие рецептора с соответствующим ему лигандом инициирует закрытие или открытие связанного с рецептором ка­нала.

Ионоселективные каналы делят на химические и электрозависимые. В первом случае раздражителем является вещество (медиатор, гормон, ме­таболит, лекарственное средство), во втором — возникающее в непосредст­венной близости от электрозависимого канала возбуждение, т.е. потенциал действия.

Ионоселективные каналы в зависимости от скорости их активации и переноса ионов делят на быстрые (например, натриевые) и медленные (на­пример, калиевые, кальциевые).

Для каждого из переноси­мых через мембрану вида ионов существуют самостоятельные транспортные системы — ионные каналы (натриевые, калиевые, кальциевые, каналы для хлора), основные свойства и механизмы действия которых сходны. Ионный канал состоит из поры, воротного механизма, сенсора (индикатора), напря­жения ионов в самой мембране и селективного фильтра.

Мембранно-ионные механизмы происхождения потенциала покоя. Статическая поляризацияхарактеризуется наличием постоянной раз­ности потенциалов между наружной и внутренней поверхностями клеточ­ной мембраны и цитоплазмой, равной —60—90 мВ и называемой мембран­ным потенциалом (МП), или потенциалом покоя. Мембранный потенциал легко обнаружить в следующем простом опыте. Когда кончик микроэлектрода находится в межклеточной жидкости, между ним и индиф­ферентным электродом (находится там же) разность потенциалов равна нулю. Это связано с тем, что межклеточная жидкость вследствие равнове­сия в ней суммы анионов и катионов электронейтральна. В момент, когда кончик микроэлектрода преодолевает клеточную мембрану и погружается в цитоплазму, луч на экране осциллографа быстро отклоняется вниз от нуле­вой отметки потенциала. Это свидетельствует о том, что между цитоплаз­мой и межклеточной жидкостью даже в состоянии покоя существует некая разность потенциалов.

Электрогенез процесса возбуждения. Одиночный цикл возбуждения характеризуется множеством признаков, из которых наиболее значимыми являются электрографические, электрохимические и функциональные.

Электрографические признаки. На экране осциллографа на большой развертке биоток имеет вид мно­гокомпонентного графика, в котором выделяют: изоэлектрическую линию (изолиния); предспайк; спайк (восходящая и нисходящая части, или перед­ний и задний фронты); отрицательный и положительный следовые потен­циалы. Кроме того, на графике отмечают критическую точку деполяриза­ции (КТД), так называемый овершут (линия нулевого потенциала), точку инверсии заряда и ряд других компонентов. При регистрации физиологических процессов на графической записи всегда должны присут­ствовать отметка раздражения, вызвавшего возбуждение, и отметка времени.

Электрохимические признаки. На протяжении одиночного цикла возбуждения мембрана последователь­но меняет свое электрохимическое состояние. Длительность его колеблется в различных клетках от 1—2 до нескольких десятков мс. Выделяют: а) статическую поляризацию – предшествующее собственно возбуждению состояния покоя; б) деполяризацию; в) реполяризацию; г) гипероляризацию.

 




Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 776; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.62.10 (0.013 с.)